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Abstract

This report develops a scoring or, equivalently, validation
procedure for those multiple }arget correlator-trackers which, in
effect, form a partitioning Q of accumulated data Z from multiple
sensor sources into disjoint track sets and a possible false alarm
set. The accumulated data may involve missed detections, false
alarms, and may describe, typically, measured target positions,
velocities, or various target éttributes, such as hull length or
even identification. One sush score, J, foE a given correlator-
tracker is defined to be J(Q,Z) = -2 log pr(Q|Z), a form related
to the posterior distribution function of partitionings of data.

Use of J as a measure can be justified from both information and
decision theoretic viewpoints. In particular, minimal J 1is

achieved by the posterior maximum likelihood estimator of Q.
E(a,znﬂa), a measure of cross entropy, is minimized among constant
Partitionings by 6 = 6: A closely related score J‘(é,Z) = -2 log
pr(z|6) has similar properties to J and is computationally more
convenient. The emphasis of this report is on J-. -

When a linear Gauss-Markov tracking and observation model is
assumed, and false alarms and attribute information are modelled by
Gaussian processes, J~- 1is shown to be a sum of {elatively simple
computable terms. The distribution of (J-(Q,Z)i{Q) under the above
assumptions is that of a chi-square random variable plus a constant.
Thus, J~- 1is a natural measure of the goodness of fit of a correlator-
tracker's output to the data it is operating on.

Several correlator-trackers can be ordered with respect to overall
relative accuracy through use of their scores in a weighted sense -
depending on the prior decision probabilities and the decision costs
involved. However, it is also shown that type I and tvpe II decision
errors are difficult to compute, since distributions involving
((J‘(é,z) - J'(g,Z))}dB apparently cannot be obtained in simple
form, in general.
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INTRODUCTION

This report is the first part of a two part study concerning
performance measures and scoring procedures for the multiple
target, multiple sensor correlation problem. In this document,a
methodology is developed for determining how well the outputs -
in the form of partitionings of the data - of a given correlator-
tracker match the actual track sets and false alarms that are
present. \In the second part of the study, numerical examples
will be presented for simulated real-world situations, including
ocean surface and subsurface scenarios. These examples should
both illustrate the potential use of the scoring procedures
developed here, and lead to various sensitivity analyses. 1In the
latter, trade-offs are expected to be established between a number
of guantities of interest, including, background shipping densities;
types of evasive target motiouns and group formations; number of -
(true) targets. of interest; false alarm rates; incoming sensor
measurement rates; averaged measurement errors; and correlation-
tracker design -~ illustrated, e.g., by the number of, or average
length of, track sets formed.

The study is part of the on-going Correlation Handbook Project
at the Naval Research Laboratory (Code 7932), under the aegis of
NAVELEX. The results of this report extend and supersede much of
the earlier work presented in Ref. [1].

A performance (or validity) measure of a given correlator-
tracker determines - through its numerical outcomes - how well the
outputs of that correlator-tracker estimate the true target -
false alarm situation, through its partitioning of the observed

data into track sets.




The purpose of this report is to present a scalar perfor-

mance measure which: is applicable to a wide class of correlator-
trackers; is relatively simple in form, suitable for real world
operational implementations for use in ocean surface, subsurface,
air, or ground surveillance, or in any combination of these
scenarios; and is justified by a mathematical-logical basis.

(For additional explanation of terms used here, see the
.following section.)

The correlator-trackers treated here operate on data, re-
ceived by possibly several sensor systems, which is in the form
of reports tha£ may, unknown to the observer, represent targets of
interest or false alarms. The class of sensor systems considered
is general and is essentially only limited by the restriction that
the time and sensor source of each report be known. Reports may
contain: (1) geolocation target or false alarm measurements, such —-
as observed positions or velocities, which typically come from
bearing, range, and related sensors; and/or (2) possible non-
geolocation target attribute information, such as observations of
hull length, number of sensors on-board, emitted frequency infor-
mation, which usually arise from intelligence sources,.visual
sightings, acoustic sensors, etc., in conjuction with (1).

One candidate performance measure is J, the negative log
posterior distribution of data partionings evaluated at that par-
titioning characterizing the correlator-tracker, at hand. A closely
related measure is J“, the negative log conditional distribu;
tion of the observed data, conditioned on the partitioning. J-

‘is shown to have a much simpler form than J. If no prior know-
ledge is available conerning what the true partioning of data is,

then a uniform distribution assumption lends to J and J° dif-
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fering by a function of the data only - and not of any partitionings.
In this case, all of the theoretical justifications for J equally
apply to J°. The bulk of this report concerns the evaluation
and presentation of the properties of J°.

J° can be expressed as the sum of three submeasures;
Evaluation of J“ involves computing Kalman filters for the
various track sets of the correlator-tracker, resulting in a sub-
measure of goodness of fit of the tracks. Another submeasure
computes the plausibility of the false alarm set determined by the

correlator-tracker. A third submeasure determines the goodness of fit

of the target attribute data at hand (such as observed ship identi-
fications, frequencies received, hull lengths observed, etc.).
These submeasures, from their relatively simple structures, are
expected to be implemeﬁtable for real time incoming data, recur-
sively in many instances.

In order to properly determine J°“, Kalman filter outputs
of the correlator-tracker being evaluated may have to be disre-
garded and replaced by the specially structured Kalman filters
used for J°. This, in general, is due to either or both of the fol-
lowing two factors being present:

1) The correlator-tracker at hand may in its own opera-
tional form be using an adaptive extended - or in some way hon
linear-Gauss-Markov target motion and measurement models. Ir this
case, present or relatively recent target positions, e.g., will
be more accurately estimated than previous ones, and correlation
errors can acﬁually be wdrse than for non-adaptive filters. Iﬁ any
case, sums of the apparent quadratic forms of data fit do not really
represent the fit of the entire track set to the data.

2) Targets may be maneuvering so that the linear-Gauss-Markov
target motion assumptions become invalid.

Appendix C exhibits detailed flow charts for computations re-
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data In determining J-, with some particular
numerical examples given in Appendix D.
BACKGROUND

In brief, the correlation problem considered here may be de-
fined as follows: Determine, within feasible computational bounds,
that partitioning of the observed data set, which most accurately

reflects through its component track sets, the true (but unknown

to the observer) partitioning. 1In the correlation problem consi-
. dered here, data is accumulated in the form of vector valued reports,
labeled as to sensor system source and time, accumulated over some
specified sampling interval. The component sets of the partition-
ing represent either track sets, each corresponding to a single
target source (estimated, if the partitioning itself is an estimate
of the true partitioning), or the false alarm (or clutter) set.
(The latter may be vacuous.) The observed data vectors may be
classified into two categories: geolocational and non-geolocational
attributes. For any given time and sensor system it is possible
that either of these types of data vectors may be vacuous. For the
geolocational case this may be due to missed detections; however,
generally when geolocation information is not missing, the number
of components in the data vector will be fixed and typically in-
cludes positional and/or velocity observations. False alarms may
be mixed into this data. Fcr the non-geolocation case, the number
of components and type of information available in a given data
vector is random. Typically, non-geolocation target attribuﬁes can
include any subset of the following: sighting of ship identifica-
tion, observed ship silhouette/shape, estimated hull length, ob-
served flag color, number of sensors of a given type detected to
be on-board vessel, and ship machinery frequency outputs observed.
Broadly speaking, correlator-trackers, i.e., schemes which

first establish partitions of the data and then use these, in turn,
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to establish tracks of the targets, ﬁay be divided into two classes:
'soft decision' and 'hard decision' types. The former, basically
establish posterior distribufions or sets of possible partitions

to be considered, generate weights based on the likelihoods or

similar measures of the possible partitions, and then estimate target

motion parameters through weighted sums of Kalman filters. (See,
e.g., Ref. [2]). On the other hand, hard decision correlator-
trackers may be identified with a single partitioning of the data;
"the estimated target motion parameters being determined by a Kalman

filter for each component track set of the partitioning. (See Ref. [3].)
In this report, only those correlator-tracker schemes are

- considered which can be identified with a single partitioning of
the accumulated data, for each sample time. Thus, this includes
all hard decision correlator-trackers and thosé soft decision ones
which can be suitably modified, such as by choosing that partition-
ing of the data which maximizes the posterior distribution of
possible partitionings, or some related statistic.

Extensive overviews and general analyses of the multiple tar-
get multiple sensor correlation problem may be found in NRL's
Correlation Handbook [4]; see also the earlier work of Kullback and
Owens [5]. General models for the problem are presented in Sittler
{61, Reid (2] and Goodman [7]. Bar Shalom (8] and Goodman [7]
Chapter 12 also contain technically detailed surveys of various
correlator-tracker schemes, with a numbér of examples presented

for both the hard and soft decision cases.

STATEMENT OF THE PROBLEM - PERFCRMANCE MEASURES

Consider the problem of determining how well a particular
correlator-tracker technique works. It is obvious that if target
density or false alarm rates are sufficiently high, even with very

accurate sensing systems present, no correlator-tracker will




perform well. Other factors also contribute to correlation diffi-
culties, such as sensor feliability, data rates and variable types
of target motion, including maneuvers. Despite the above negative
remarks, there appear to be many occasions (moderate data rate

with few targets and false alarms present, e.g.) when the correlation
problem may be amenable to reasonably accurate solutions. 1In

these situations, an analytically based performance measure can
serve as a valuable tool for ranking and comparing quantitatively
different approaches.

Due to the possible combinations of many factors - including
target initialization and termination times within the sensor areas
of interest, detection failures, variable target motions and
maneuverings and matching of non-geolocation attribute information
to the correct track sets - a large number of possible partition-
ings of the data into track sets can occur. This, in turn, can
lead to an exponential growth - .with respect to sampling time - of
the number of computations required in implementing or monitoring
error bound performance of correlator-trackers, even under very
simplistic model assumptions. (See, e.g. Theorem 4 of the abridged
version of Ref. [7] for an example of exponential growth in the
number computations needed to compute target motion parameters,

See also Ref. [1l].) Thus, alternative performance measures must

be sought which do not involve such a large amount of computations,

Performance measures, or, as they are often called MOE's
(measures of effectiveness) can be roughly divided into two basic

classes: (1) observer dependent only and (2) simulator-obseryer

dependent.




A performance measure is defined to be observer-dependent only,
if it is a true statistic, i.e., known function, of the cumulative
data and the partitioning determined by the correlator-tracker in
question.

On the other hand, a performance measure may depend in imple-
mentation on knowledge of what data constitutes the true track sets
and/or false alarms, i.e., on the true partitioning of the data.
The measure may further depend on knowledge of the correct target
motion parameter vectors such as positions, and correct time of
initialization and termination of the targets from the region being
surveilled. In this case, the performance measure is said to be
. simulator-observer dependent.

In general, an observer dependent only performance measure,
or briefly, score, is evaluated relative to its statistical dis-
tribution as a random quantity (based on the random data), or at

least relative to its statistical moments, conditioned on an assumed

true situation (i.e., true partitioning of data or even true tar-

get motion parameters). These statistical moments, are thus
simulator-observer performance measures generated by the score.
Some examples of scores are: average observed track depth
or persistance; number of tracks exceeding a depth of three sample
times; and number of tentative tracks, i.e., track sets having no
more than a prescribed upper bound on track depth (e.g., two).
(See( e.g., References [9] and [10].) Another measure that is’
observer dependent only is consistancy of performance (see [10]).

The latter measure describes how much difference exists between
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the initial filtered-partitioned output data from a given
correlator-tracker and a second output resulting from recycling
the initial output through the same correlator-tracker (by using
it formally as raw input data). (See also Ref. [1l] pages 6 and
7 for further mathematical details.)

Simulator-observer dependent measures of performance are
much more plentiful in the literature of correlator-trackers and
_related algorithms than those in the former class. Wiener et al.
(11] present a number of examples of these measures, as well as a
general overview of the rule MOE's in general play in the command
and control aspects.of ocean surveillance. (See also the overviews
in [12] and (13].) Typical measures here include all measures of
accuracy of target motion parameter estimators, thus, e.g., esti-
mated coverage probabilities of target parameters; track purity,
i.e., percentage of correct elements in any given track set; prob-
ability of correct association between new reports and previous
established tracks, and percentage of targets having track depths
of given lengths. Most of the above measures may be averaged with
respect to sampling times and number of targets present.

This section is concluded with a brief overview of the litera-
ture of simulator-observer dependent MOE's.

Among the measures Willman [9] uses for evaluating the per-
formance of his hard decision 'matrix scan' correlator-tracker are
four involving actual and estimated track depths (the latter obtained
through estimated probabilities of consecutive track linkages).

In addition, Willman émploys: a measure which is formally the same.

as the determinant of a corresponding two-by-two table of entries;




percentage of old targets having established tracks lacking new
assignment of reports; and percentage of misassigned reports.

Kullback and Owens ({5}, pp. 31-42) consider numerical dif-
ferences between the number of targets and false alarms estimated
and actually present, as well as track purity. In addition, use
of non-geolocation attributes by a correlator-tracker is proposed
to be measured by an ambiguity function which counts the total
number of possible ships in the area which could fit those attri-
butes assigned to each track set. Other measures are discussed which
measure the information level of correlator-trackers.

Adler et al. [14] have proposed a number of interesting MOE's,
including the rate of track fragments (interruptions in tracking
the same targets) and average time between correct correlations (or
linkages) of old tracks to newly arriving reports. Turner and
Marder [15], in addition to the usual measures, use as a measure
the number of observations required of a target to form a firm
track. Reid [2] proposes (in addition to percentage of targets
tracked, lost, etc.) the average number of partitionings of data
kept, following pruning and merging, according to (his soft decision)
correlator-tracker. (See also the MOE's presented in References
[16] - [18).) The performances of the large scale correlator-
tracker presented in (19] (resulting in various model improvements -
Personal Correspondence) were measured by a number of MOE's pre-
viously mentioned, including track purity, accuracies of estimators,
and the number of tracks sets having relatively short depths.

Observer dependent measures are presented in greater detail




in the next section.

OBSERVER DEPENDENT PERFORMANCE MEASURES - SCORES

As mentioned in the previous section, many measures of per-
formance exist, but in effect they form a patchwork quilt of
descriptions for the behavior of correlator-trackers in general.

Alspach and Lobbia [20] construct an observer dependent only
performance measure, which operates on a correlator-tracker's
perceived data partitioning only through the total number of re-
ports assigned to track sets and the total number of reports
assigned to the false alarm set. The statistical expectation of
the evaluation of this measure (with respect to the randomness of
the data) holding the number of track reports and false alarms
fixed, is also a performance measure which is both observer and
simulator dependent. This is shown to be a concave unimodal
function (under certain simplifying assumptions) of the total num-
ber of reports assigned to track sets. This function is seen to
be a linear function when the number of reports assigned to track
sets is less than or equal to the true number of reports that
should be assigned (via the true partitioning) to the.track sets,
and possesses an absolute minimum when the number of reports decided
to be targets is equal to the number of actual targets.

In this report a score J° is proposed which is expected to
be relatively feasible to implement: (twice) the negative logarithm of
the conditional Pprobability function of the possible data pafti—
tionings, evaluated at that partitioning determining the correlator-

tracker to be evaluated. An associated simulator-observer dependent
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performance measure (I°) is also presented. This measure is
essentially the statistical expectation of J- conditioned on any
given true partitioning of data, a cross entropy measure.

Although Alspach and Lobbia [20] briefly discuss the possible
use of a statistic related to the one proposed here (but do not
consider non-geolocation attributes), they dismiss use of it be-
cause or apparent difficulties in determining the non-random terms
consisting of determinants of innovation covariance matrices. 1In
effect, in Alspach and Lobbia's score, the non-random terms are re-
placed by the product of the number of data points decided to be
clutter or false alarms employing undetermined constant scores for
any single point decided to be clutter.

In Reference [21] and [3]:  (the former treating data recursively
in time, the latter handling data non-recursively), new reports are
assigned to those track sets and to the false alarm set such that
performance measures which are modifications of the log'likelihood
of possible partitions - a statistic related in form to that pro-
posed in this report - are maximized (or minimized). (See Ref.

[8] for concise descriptions of other correlation techniques which,
in effect, also use performance measures for determining imple-
mentations.)

The motivation of the choice of the negative log conditional
or posterior probability functions of possible partitionings
as a measure of a correlator-tracker's performance is based on
five desirable properties:

1. The measure in its initial focrm (before taking expectations

11




with respect to the data) is truly observer-dependent only, and
may thus be used as a ieﬁl world scoring method.

2. The score is relatively simple in form, or can be
reasonably approximated by a simple structure, suitable for real-
time implementations.

3. The score directly reflects the goodness-of~fit of the
partitioning of the correlator-tracker in question to the given
data, employing geolocation terms, non-geolocation attributes and
false alarm data.

4, The statistical distribution of the score is related to
a chi-square random variable.

5. Use of the score can be justified from information theory
and statistical decision theory viewpoints.

The statistical expectation of the score is observer-simulator
dependent and can also be used as a measure of performance. In
particular, the expectation of the measure will have smaller values,
generally, for correlator-trackers which use more information and/or
have lower risks (equivalently, better approximéte the Bayes or
maximal posterior data partitioning).

The above five properties may well serve as a general guide-

line for establishing performance measures for correlator-trackers.
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OUTLINE OF THE REPORT
The introductory sections describe the correlation problem,
in general, and performance measures, in particular. ‘'Hard' vs.
'soft' types of correlator-trackers are detailed; the former being
more conducive for being evaluated by the performance measures J
and J° presented in this report. J is essentially the negative
log posterior distribution function evaluated at that partitioning
Q of data characterizing the given correlator-tracker, while J°
is a related more computationally simpler measure involving the
conditional distribution of the data (conditioned on Q). Surveys
of the available literature for both observer dependent (J and J°
are in this class) and simulator-dependent performance measures are
presented. Relations between these measures and the ones proposed
in this report, where applicable, are described. A guideline is
presented for desirable properties that any performance measure
for correlator-trackers should possess. (J- satisfies these criteria.)
The Analysis Section first establishes (subsection 2) com-
prehensive definitions and mathematical models for all assumed tar-
get motions (eq. (2.1));occurrence and location of false alarms
(subsections 2((3)), ((6))),and observation measurements (eq. (2.2)).
Following this, statistical decision theory and information theory
bases are established for use of the proposed scores (subsection 3).
In essence, it is shown that the lower the value of J or J-, the
closer the correlator-tracker (through its partitioning of the data)
matches the true but unknown partitioning of the data into the cor-
rect track sets and false alarm set.

The next subsection (4) of the Analysis Section develops the
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full structure of the simpler performance measure J-. This leads
to a decomposition of J° into a sum of three terms, reflecting
goodness—-of-data-fit to the partitioning determined by a given
correlator-tracker (eq. (4.1)). The geolocation target data term
is shown to be the sum of constant and quadratic forms of innova-
tions that are outputs from Kalman filters (eqs. (4.2) - (4.51)).
The (geolocation) false alarm term is the sum of constant and
quadratic forms of data (eq. (4.52) - (4.61)). Both terms are seen
to depend explicitly on the number of targets and false alarms
perceived by the correlator-tracker. The non-geolocation target
attribute term involves discrete sums of probabilities (egs. (4.62) -
(4.70)). If a normal approximation is made in the modeling of
these attributes (see remarks following eq. (4.70)) then a Kalman
filter (egqs. (4.114) - (4.127)) may be used for evaluation of this
term: a constant plus gquadratic forms of the data. (See egs.
(4.63), (4.64), (4.68), (4.69), (4.79) - (4.82).) A further simpli-
fying approximation - which avoids basically prior knowledge of the
randomness of the non-geolocation characteristics is given in
Appendix B; in addition the accuracy of this approximation is also
demonstrated.

The final subsection (5) of the Analysis Section develops the
distributional properties of J“. It is shown that J°, conditioned
on the partitioning determining the correlator-tracker being evaluated,
is distributed as the statistical independent sum of a constant,

a chi-squared random variable, and a discrete random variable (see

egs. (5.1) - (5.5)). Under normal distributional approximations

for the non-geolocation attributes, the above discrete random
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variable is replaced by the sum of a constant and a chi-squared
random variable (see remarks following eq. (5.5).) It follows

in this case that J° is distributed as the sum ot a constant and

a chi-squared random variable (egs. (5.6) - (5.9)). 1It is also

shown that J° conditioned on a partitioning of data not coinciding
with the one determining the correlator-tracker being evaluated,

has a distribution which is not easily computable (not even a non-
central chi-square distribution). (See equations and remarks fol-
lowing eq. (5.9).)

Appendix A presents a procedure for calculating matrix in-
verses in prescribed block form. This.can be useful in evaluating
parts of the Kalman filters used in the computations for the geo-
location targets and non-geolocation attributes terms (assuming a
normal approximation).

A further approximation to a quadratic form arising from
normal distributional approximations for the non-geolocation attri-
butes is presented in Appendix B, where alsoc error bounds are
derived. Use of this approximation minimizes required prior know-
ledge of the randomness of the true non-geolocation attributes of
the targets.

A complete set of flow charts for computing J° relative to

incoming data is presented in Appendix C.
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ANALYSIS
1. INTRODUCTION . -
In order to be able to define and analyze consistantly the ‘
performance measures proposed here, a rigorous mathematical - logical
model is established for the general correlation-tracking problem.
(This largely simplifies the model proposed in Ref. {71.) This
model consists of eight key aspects: ((1)) sensor systems, ((2))
target initializations and terminations, ((3)) existance of target
state parameter vectors and detection, ((4)) partitionings of
observed data, ((5)) target state parameter vectors, ((6)) observed
geolocation data, ((7)) non-geolocation attribute data, and ({(8))
total observed data.
Although the model obviously simplifies the real-world situa-
tion, it is expected that its constituent assumptions are
'reasonable’ approximations of reality. In keeping with the attempt -
to be as faithful as possible to the real world setting, the model
established represents a relatively short data sampling period,
jo, and can be changed with respect to each new sampling period;
all of the available output information from the previous sampling
period, being used as input - prior information for the next period.
This disjointing of the sampling times into short segments should
make more valid the homogeneous linear Gauss~Markov motion and measure-
ment models ﬁsed in ((5)) and ((6)). The latter assumption can
account to some degree for variations in types of target motiqn by
allowing in the model a reasonably large state vector dimension

with zeros possibly occurring in particular entries. (Thus,

quadratic polynomial motion includes as a special case, straight




line motion, with the possibility of estimated error covariances
being actually larger fhan necessary.) This results in the avoid-
ance of a potentially large branching problem that can arise in
attempting to model the general correlation-tracking problem.

(See, e.g. Goodman [7], especially Theorems 4 and 5 of the abridged
version for an illustration of the complexity arising when variable
target motions and maneuvers are modeled.)

Even over a relatively short sampling period, a target may
engage in maneuvering - such as zig-zags or circular motion - which
is not really modeled by the same linear Gauss-Markov target motion
model. Yet, a given correlator-tracker may still retain the ability
to follow that target, and thus essentially put all observations
of it into the same track set. (This will usually be carried out
by highly nonlinear adaptive Kalman filters - which do not reflect
the target motion model assumed here.) Clearly, a linear Gauss-
Markov fit to this track set - which is one of the computations
required to obtain the score of the correlator-tracker in question
(see eq. (4.20)), - in general for this situation is not
appropriate.

Consequently, a special procedure is used in computing
the score for a correlator-tracker which has at least some track
sets generated apparently by a maneuvering target as described
above. 1In essence, the procedure retains the mathematical rigor
of the model, by simply replacing the single track set in question
by a disjoint union of different (but almost contiguous) track
subsets, each distinct track subset based on measurements eminating

from a different linear Gauss-Markov motion model (as is permitted
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in the overall model). The termination time of each such subset
(and consequently, the next sampling time being the initial timge
of the following subset) is determined Sy either a simple chi-
squared test involving goodness of fits or, more generally by using
the non-geolocation attribute of common - but unknown - identity
in monitoring the entire goodhess of fit data probability function.
See Appendix C, for implementation of this procedure and for

ove:all flow chérts éor computind‘the'score J° of a given
correlator-tracker as a function of incoming data.

| It should also be noted that often correlator-trackers opefate
with nonlinéar adaptive—extenéed Kalman filters of the track sets.
In fhese cases the original filters must be replaced by the linear
ones for the model developed here (see er; (2.1), (2.2)) in order

to reflect the total goodness of fit of the track sets.
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2. ASSUMPTIONS AND BASIC DEFINITIONS FOR THE CORRELATION-TRACKING MODEL

((1)) Sensor Systems

g known fixed sensor systems sample data in the form of vec-
tor reports at known and possibly random outcome times
t0<'tl< ...<<tjo, where g
expéiience or other factors. (See the discussion on choice of

is chosen relatively small based on

jo
in the.previous : subsection.)

((2)) Target Initializations and Terminations in AOI

An unknown number M(j) (to the observer) of targets begin
existance in the sensor areas of interest (AOI) up to time tj.
This is due to targets either entering the AOI for the first time
and/or becoming sufficientiy active that they may be detected by
at least one of the sensor systems present. Some of the targets
in the AOI, latef may terminate existence (relative to the AOI),
i.e.-exit the AOI or quiet down so that they can no longer be de-
tected by any of the gq sensor systems present. The number of tar-
gets actually existing at tj is denoted by Mj’ also unknown.
Thus, Mjs_ M(j), M(j) is non-decreasing in 3j, and Mj and M(j)
are random integer outcomes.

Related to the above definitions, associated with any target

-] .
ice M(a) df U M(J) are two unknown random integers Ui, Vi
i=1

0<u, gV, where t, is the time of target i's initial existence
i
in the AOI and tv is the time of its termination. It is assumed
i .
that any target exists over successive sampling times and if it ceases

existence (for two or more sampling times) and begins again at a

later time, it is considered a distinct target here.
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((3)) Existence of Target State Parameter Vectors and of

Observed bata Vectors (Detection)

For any target i, time tj and sensor Kk, xij represents

its state parameter vector (not dependent on k), 2 its

ijk
observed geolocation measurement vector, and Yijk its observed

non-geolocation attribute measurement vector. 2 is the set of

0jk
false alarm vectors occurring at time tj due to sensor k.

X5 5 #. ¢ iff target i exists at time £y in which case

dlm(Xij)E m is known. Thus xij#ds iff u, <3

A

V.
i
The following is closely connected with sensor detection:

zijk # ¢ iff sensor k makes at time tj one geolocation

measurement of target i, in which case dim(Z. is known.

1jk) =r

jk

ZOjk #¢ iff sensor k receives at time t., f (f

. o2
] jk "Tjk =

geolocation measurements of false alarms in which case, the false
is

. as. _
alarm set is Zojk = {ZOjkwIw"l'z""'fjk}' where Zojkm

the mth false alarm vector seen by sensor k at time tj and

dlm(Zojkw) Erjk is known. fjk is an unknown random outcome,

- . ) [ ]
distributed exponentially as Expo (Ajk), ljk known. fjk s are
statistically independent with respect to different (j,k)'s.

Yijk # ¢ iff sensor k makes at time 'tj one non-geolocation

target attribute measurement of target i, in which case

lg d;m(Yijk)g_b, dlm(Yijk) and b are known.
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xij is always unobserved.

2,

ik and Yijk are always observed.

Index i 20 (including i=0 for the Zojk's) is unknown

to the observer, while j and k are always known. 1Index w is
always unknown. However, when the observer forms a iaartitioning

Q(j) of the data (see the next subsection), relative to Q(j)
assumed to be formally true, index i (including i=0) becomes

(formally) known.

If xij = ¢, then clearly zijk =*Y]._jk = ¢, for 1g k<qg.
On the other hand, xij # ¢ does not guarantee zijk and/or
Yijk being nonvacuous. For example, sensor k may miss a dis-

tinct detection due to resolution problems, noisy background, or
reliability problems caused by equipment or human operator failure.

(9,

Define, for any i; 1< igM i, k.
Z..
2. d-;f- 21k ; 2. EE_Z .
ijk Yijk 0jk 0jk
Z,, represents all observed data of target i (for i2 1)

ijk

at time tj by sensor system k. It is called a report.

((4)) Partitionings of Observed Data

For any i, lgigM(J), define

Qi(j) g {(i, a,k)l for all o, k,
0gagj & 1¢kgq such that
Ziak # ¢}

= target track index set 1 up to ty-
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2, & t(0,a,k,0) | for all a, k,u,
0gag) & 1skga & lsuw g fak & such that
#¢ (and hence f ,21)}

zOuk
= false alarm index, set up to tj (possibly vacuous).

The partitioning index of data up to tj is given by

Q(j) _C}_:f_ {Qi(j)l ieA(j)} ’
where

a3 2 ¢ 10cign®) & Qi(j)¢¢}

corresponds to the set of all distinct target track sets established
up to tj' including the false alarm set as a special track set (0).
Notice that Q(J) is determined by the (detection) set of

.'s,

all (i,a,k)'s for which Ziak.#¢' and indirectly by all Tk

M(j), by all ui's, vi's; and by the set of all (0,a,k,u)'s for

which £ ,21.
ak ]
Given index Q(J), there are infinitely many corresponding
partitioning outcomes Q(j)(Z(J)), depending on the values of the

Ziak's, where

I

0, M) &z, | (a0 e

In general, we identify, if ambiguity does not arise,
Q(J)(Z(J)) with o3,
Note that all partitionings Q(J) are unlabeled, that is the

indices i for each track set (or false alarm set, for i=0)

Qi(J) does not identify what target i really is. It is just a

convenient index. : .
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In some of the following equations equality holds only after
a suitable rearrangement of indices is made.

((5)) Target State Parameter Vectors

The results here do not depend on Q(J):
Given outcomes (ui; vi) for i=1,.., M(J) and equivalently

those (i,j)'s for which X; 5 #'0;

(3) as . .
X4 == {xia | u; < agmin(v,,j)}

= {Xiu logac<i & xia# o}

= set of state vectors of target i up to t..

J
af iem ()
X. — {X.. 1< M & X.. # }
3 i3 | 1gis i3 7
= set of all state vectors of targets existing at tj'
xG) 2L x| 0ogog i s X, # ¢}

= set of all state vectors of targets existing sometime -

up to ¢t..
P J

Initial state vector Xi " of target i (at tu ) 1is assumed
"y i

to be distributed normally Nm(E(xi,u.)’ COV(Xi'u.))' where

i i
Cov(Xi a ) is known and E(Xi a ) is unknown, unless otherwise
i i
specified.
(Prior information for xij’ j<ui, may be used to determine

both or either of its moments, )

assume

<V, : a=u.,..,, .
"If U, <V, for UspqreseVyo

X, o =0, X, . + Goy'Wig o (2.1)

linear Gauss-Markov homogeneous target motion, where
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00 is m by m known transition matrix,

G, is m by n known coefficient matrix.

Wia is distributed Nn(o, Pa): Pa known.

wiu's are statistically independent for different (i,q)'s:

they are all unobserved random variables.

X and w., are statistically independent,

i,u_l

Xi(J)'s for different i's are statistically independent.

((6)) Observed Geolocatipn\Data

2, ) at
1

{2, 0k | 0ce 25 & 15k 2q & Ziak# o}, for any i,

= geolocatioh data for track set i (and hence for

target i, 1 unknown to the observer) up to time

@_E < <

Zij == {zijk | 12 k £ q & Zijk# ¢},
= geolocation data for the ith track set at tj

(from all sensors),

af o (3) -

Z = {235, lo<gizsm & 1k 2q & zijk#¢}
= geolocation data for all track sets at tj'

j)  af . j . '
20 Sz, 1 02ixn so0gass s 1sksq &z, Fe

= {3, ] 0%esi &2, 7 ¢}

geolocation data for all track sets up to tj

n

total observed geolocation data up to time tj'
Define similarly, Zi(J% Zij' Zj' Z(J), etc.
For any Zijk.# ¢, i=1, ..., M(J), the observed geolocation

target data or measurement is assumed to have a linear regression
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m

.

relationship with respect to a corresponding

2i5k = Byx'Xi5 t Vigx

In more compact form,

target state vector:

.2 =B, X.. + V.. ; 2.2
1] PR 1j ( )
B. .
31 131
B, 8% {. R
il B. \ 13 .
J9] for 1zksq 19} for l<kz q
~such that .such tha
235k 7 0 Zi5k% ¢
Bjk is always a known rjk by m matrix, Vijk is

unobserved and distributed statistically independent of X:4 and

J

indeed of X(J); A 's are statistically independent for

ijk
different -(i,j,k)'é.
v

is distributed normally as N, (0, R with

R always known.

ik
Thm,fari=l,..,Mh):

Vij is distributed as Ns (o, gj),

. ij i

where

for 1ik;d
such that

af

2

. 1§k;q
such that

= dlm(Zi.) .

Tik j

z 7 o

ijk

Since «r is known to the observer, if Q(J) is given, then

jk

25
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‘ij will be known (even_though i remains unknown to the observer),

if Q(J) is given. Similarly for B:i and Rj.
i i

Let

= {Zizk |1;k;_q, oé’z;j, léif—-M(])r—zizk#Q}

total observed geolocational (true) target data up

to t Lo 2
J
Note that
ZO(J) = total observed geolocational false alarm data up to
t.. |
J

For i=0 such that 2Z,..#4¢, and for all w, lsw < f

0ik = “jk’
it is assumed that szkw is statistically independent with respect
to different (j,%k,w)'s, all other Zi(J) 's, 1z i.,;M(J) , and to

X(J) . In addition, it is assumed that i°- f 21, for fixed j,k,

3k <
’ s - . .
the Zojkw s for l:2w éfjk are ident. ally distributed as
Z.. : N(6.,, M..), where 0. g—-‘f.E(Z . and M Q-‘ECOV(Z )
0jk1 jk* ik ik 0jk1) 7 Tdk T U7 Mogkd’’

ejk and Mjk are assumed known. Although in general fjk is
(3)

unknown to the obsérver, given (true) Q , £ becomes known.

(3)

jk
Similar properties are assumed for the Z0 jkw's given Q

((7)) Non-geolocation Target Attribute Data

Let a and b be fixed known positive integers and

C' g {Cl, .oy Ca}. a fixed known set of distinct objects where each

o aB Pl

o L a.

<
-

182D
The Ca-s'sv represent possible non-geolocation attributes of

any target.
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For example for b = 3,

Cul = yisual identification

”

{Ryr v Mygolr

where each n, is a distinct ship name,

Cc

w2 observed flag color

m

"{Red, Green, Brown, White} ,
C&3 = no. of radar sensors determined to be on-board the ship
e {0, 1, 2, .., 10},
Thus, if all possible combinations of attributes can occur,
then a = 100-4-11 = 4400; but if certain combinations of values of

cal' Caz, Cm3 are excluded,then a may be a good deal less than

4400. (This will often be the case.)

Define, random variable Hi (not dependent statistically on

Q(J)) over the set C to represent the distribution of possible

attributes occurring for target i, i=1, .., M(j) . The prob-
ability function of Hi is known. (Hi's outcome is unknown to
the observer.) Also assume that the distribution function for H,
is not dependent on tj' for the duration of target i's eristence
in the A.O0.I. '

Now for any i;j,k such that xij #¢ and 1l< k<g, let

T be always an observed random subset of {1, .., b} which is

ijk
statistically independent for different (i,j,k)'s and statistically

independent of X(J), Z(J) and Q(J). Let o* and o~ Dbe

arbitrary, 1< a‘ a~ <a and let Y- af (c . ) and
v = = a”,B BeTijk

v~ &£ ¢ .

Define conditional random variable Yi by

jk
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Ao i el . T
T g, I T
il ST 8t

- define _Yi(j), Y

-~ ( ) hd
pr(yyy, = Y7l = ¥~ o) Epy- , ¥ 0 i, (2.3a)

a known function of its arguments (not dependent functionally on

i nor k and only dependent on Q(J) through the outcome of

Tijk)'

Analogous to the definitions in subsections ((5)) and ((6))

i3’ Y(J), H(J), etc.
¥ 4k

non-geolocation attribute present (given selection outcome Tijk)

can be considered the observation of Hi' the actual

of target i.

; ' (3)
Assume that given the Tijk s, all of the (Yijk IHi, Q )'s

are statistically independent with respect to different (j,k)'s;

suppose all (Yi(j)l Hi' Q(J))'s are statistically independent for

different i's,

Equivalently, for outcome Tijk £ ¢

Yisk = Bigk'Bi ¥ Visk
In more compact form,
Yij = gj'ni + Vij H - (2.3b)
ag { Piin Vis1
Bu E_—3 : ” Uj = :
i B.. . i Vi‘
139/ for 1<k <q . 39/ for l<k<g
such ?ﬁf? such that ™
Yijk # Yije # *
8; 5kt
af .
Bijk ——1 Bo 14
13kaijk
B g (o, oo 0' 1, 0' LR 0)'
ijks




is always known, where the 1 in the above 1 by b row vector

occurs at only the bijkﬁth position; for outcome

}
jk

Tisk = Pijk;17 Pijkz2r o hijk;ai

asg
aijk - card (Tijk)'

S <e+< b, . -3
13D, bljk7aijk b

<
ijk;1 b

ijks2

The Vijk's are unobserved discrete random variables with

known distributions, and are statistically independent of Hi'

For different (ijk)'s, the Vijk's are statistically independent
Given a Q(j), Bi Ais known.

Unless prior inf;rmation is aQailable, the probability dis-
tribution function for any Hi is not really known to the observer.
AConsequently for purposes of implementing the proposed score in a
real-world setting (where the target identifications are not known),
it is assumed initially that all of the Hi's are statistically
independent with respect to different i's and possess identical
uniform prior distributions over C. On the other hand, for a
simulator-dependent measure, the Hi's may be assignéd different
known prior distributions (including possible dirac ones), if both
the attribute properties of each target are known and the index i
is identified with the proper target by the simulator.

Thus, we define here

pr(H; = ¥~ | Q(j))

pr; = ¥7) (2.4)

1/a, if Y% C
0, if Y C
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(8)) - Total Observed Data and Additional Notation 5

By assumptions and from subsection ((6)) it follows that

= pr(z{3) | 13,

noting again that since Q(J) is given, so are the outcomes of the

Tiuk's'

By suitable rearrangements, the total observed data vector

may be broken up into geeolocation and non-geolocation atrribute com-

ponents, and further into geolocation observed target data, geo-

(2.6)

Using the Z notation, the following interpretations hold:

Zi(J) = track set i (i.e., all data corresponding to
Qi(J)) up to tjr -
Zijk = report (ijk)
= all data for track set i at tj, from sensor system k,

235 = Zisdizx 2 q,

z = all data at t,

3 3’

Z(j) = all data up to tj' etc.
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Finally, notation will be introduced which emphasizes at each
new sampling time just prior to forming a new updated partitioning
(which will incorporate and be based upon the new data), the

observer's lack of knowledge:

= 2,7
Z4 (2,7)

E . .)
vediky o lizrenrmjk
k lr'-.rq

up to suitable rearrangments of Zj, where m 0 is the total

>
ik =
number of data reports obseryed by sensor k at tj - always known -

where, recalling from subsection ((3)), a single report consists of
either (geolocation) data z;jk and/or non-geolocation attribute
data Syjk' for sensor k at tj.

B . i f :
yik is of the form

=1, (r., by 1) (2.8a)

Bk T ik ik

for some corresponding unknown (to the observer) i=1i(y,j,k),

1<i <M, @I

also unknown), or it is of the form

= 7 =

oike = Zojke (Fix PY V) (2.8b)

% .
vik

where w = wly,j, k), l”é“’;fjk' the total number of false alarms

observed by sensor system k at tj. (Recall that

|1lcwsf

Z,:., = {2

03k 0jkw }. At most one report 2 3k corresponds

jk
to each target for sensor -k at tj : the remaining reports are
false alarms.)

Note than for any Q(J), mjk does not depend on Q(J),

but does satisfy the relation
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;_.‘ |
4 . Bk =Kt Fix I*Z 1 (2.9)

i=1,2,..,mu(3) \

such that
Yijk #é, but zijk= ¢

where ‘ij) is the number of target reports seen at tj by sensor

k (see eq. (4.37), fjk is the number of false alarm reports seen

at tj by sensor k (see subsection ((3))), and the last term

represents the number of reports seen at t.

]
contain only non-geolocation information (and no geolocation infor-

by sensor k, which

mation). Unless Q(j) is given, each of the terms on the right

hand side of the above equation are unknown to the observer,
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3. BASIC DECISION AND INFORMATION THEORETIC PROPERTIES OF THE
PROPOSED SCORE

One basic score J for a given correlator-tracker is defined

here to be

3@, 230y 4L _ 3 109 pre!P = §2P -3y @y

_ where 6(3) is that outcome of partitioning of data corresponding

0 .
to the correlator-tracker in question and Z(J) is the observed
data outcome.

The corresponding simulator-observer dependent measure is de-

fined to be

(013 g9, g___g_Ez 5 @RI @) 28 - %6, @
where 6%j)(2(j)) is an outcome of the true (but unknown to the
observer) partitioning of the data.
Thus ¥( ) is a cross entropy measure. (See, e.g., Ref.
122).)
Consider the statistical decision theory game with parameter
and decision space being the set of all possible outcomes 6(j)
of Q(j). Observed data 5‘5’ has distributions of all relevant
random quantities determined from the previous assumptions. For
this game, the loss function L is of the zero-one type: for
decision outcome 5(j) and true parameter value 3‘3) of Q(j),
0 [ 00
Lol g, o | ') #od) (3.3
0 iff é‘j’ =gtd)

Then the Bayes decision function for this game is identifiable
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with the posterior maximum likelihood estimagor é(j) = d(j)(;(j)),

1-‘. '

. . s I 2P

(ov?r all) (3.4)
o ]

occurs for ‘ 6(3) = ”(j), uniquely.
(See Ref. [23], Chapter 11 and Ref. [24) for background and

elaboration of results.)

Thus it immediately follows that

min J(é(j). 2(3),

over all
8 (3)

5(3)

i) _ 4

occurs for Q , uniquely. (3.5)

If the above statistical decision game is modified to choosing

between two hypotheses (the results are readily extended to more

than two)

(3) _ a(3)

= Q' vs. H (3) - 93

Higye @ (2)° @

with loss function and prior distribution specified by (assuming

Q(J) # Q (J)

L@, Bty af L (2)
L), gy 4t L
L), gty af (21
L3, g(3))-4af (22),

a—
—

L(12) (21, an g (22)

(3.6)
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G) _ g3, af

pr(Q —pl
. oo (3.7)
pretd) = g3y L p - 1-p
then the Bayes decision function for this game is
(3) _3@3),403) _4&(3)
Decide H,,, iff X - =2 - 10 -~ =0 ")
> Ta
(3) _ 30|, _g()
Decide H,, iff BEZ =2 0 o0 0
s T (3.8)
where threshold
r 4282 oni?) o n 22 (3.9)
0 Py L(12)__L(11)

Equivalently, taking logs (see the definition of J- in eq.

(3.14))

Decide H(,, iff
_J,(é(j)';(.j).) - 3- (‘b’(.j)’;(j)) <~ 2 log Ty

Decide H(Z) iff

J- (é‘j’-,;(j)) - J- (_60(3'),"(51);;\- 2 log T - (3,10)
(For Py =Py = % and Liz = L21 and L11 = L225 TO = 1,

=2 log T0 = 0,)

Note the equivalent decisions
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1) iff

3'9,20)) (53,20 2109 T

Decide H(

0
Decide H(Z) iff

J(Q(J) 203y 300 L ,2(3), -2log T (3.11)

(o]

where
as ‘L‘ZI)-L(ZZ)

T, & (3.12)
0 LI _ (1D

For a discussion of the distribution of the J“'s and J's,
and hence the type I and type II decision errors, as well as the
probabilities of correct decisions, see subsection 5.

(3)

Suppose now the prior distribution of (Q is uniform over

the set of, say, Y5 possible outcomes.

Then
where
g-3),20)y) & 5100 prz) = 2D Z 53y (3,14
and
Dy (2(3’) L 2 109 (v, prz) = 7))y (3.15)

0 ¢ ¢

Thus J and J° differ by a function of 29)  ana not
~(3)
Q .

2 59 .2.(5
Hence, in this case, defining Q(J) Q( )(Z(])) as the condi-

tional maximum likelihood estimator of Q(J), i.e.,

max pr(z {3 = 733 _ o3, (3.16)
ovg:;all
( Q(J)

[ ] . a .
occurs for Q(J) = Q(J), uniquely,
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then equations (3.5) and (3,13) imply

min J(a(j).;(j)) and min J'(a(j),i(j))

over all over all o (3.17)
&) §(3)
occur for 6(3) =03 - 6(3) uni
= = ’ quely.

In addition, eq. (3.13) implies that

203,013 = 57,00 » p; (@) (3.18)
where
£ (o) g, & 4 (j)(J‘(a(j)(z(j))'z(j)lQ(j) _ 2y (310
and
ng(g(j’) df B (5) ©; (2‘3" dI. g, - (3.20)

the 1atter being a function of Q(J) only.

Then

min i(Q(J) 03 ana min z-(0P) 0, (3.21)
ovef a}ll ovef e}ll)
Q(J) | Q(J)

occur uniquely for the same function 6(j) = é(j) = é‘j), by using
equations (3.17) and (3.18). Also, the Fundamental Inequality of

Information Theory (see, e.g., Ref. [22], Chapters 2 and 3) implies
that if the 6(j)'s are restricted to constants (not non-trivial

functions of -Z(j)), in the two equivalent minimizations in equation -
(3.21), the corresponding mimina occuf for the common value
6(j) = o%jl. These minima are easily seen (vié eq. (3.4), e.qg.)

to have larger values in general than those for the unrestricted

case in (3.21).
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In summary, the above equations imply that if correlator-

0 f
tracker has partitioning output Q(J)

. *(j) .
operating on data .

and the true but unknown partitioning of the data is actually out-

” . » ‘ L]
come Q(J) then the lower the score J(é(J), Z(J)) ~ noting, if
() .
is made, J

el =
approximates Q‘J)

the uniform prior distribution assumption for Q
0 ¢
can be replaced by J° - the better Q(J)

in both decision and information theory contexts.
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. 4., COMPUTABLE STRUCTURE OF THE SCORE

Throughout this subsection it will be assumed that the prior
distribution of Q(j) is uniform so that. without loss of generality,
we consider only the score J° and its expectation (with respect
to data Z(j)) I°. For ease of notation here, outcomes of random
quantities - such as 6(j) with respect to Q(j) (partitioning)
;(j) with respect to Z(j) (observed data), etc. - unless ambiguities
.arise, will be identified with the corresponding random quantities.

The structure of J° 1is seen to be, using eq. (2.5) and

the calculus of conditional and joint probabilities:

J’(Q(j),l(j)) = -2 log pr(_z+(j)lQ(J))

(31,50,

-21log pr(z, - "|0

- 21o0g pr(x'? |0y, (4.1)

a decomposition into a sum of three terms: the first involving geo-
location target track data, the second pertaining to false alarms,
and the last relating to the non-geolocation target attribute data.
In turn, each of the terms in eq. (4.1) may be decomposed by
straightforward use of the special notation developed in subsection

2, and egs. (2,1) - (2.4), with the corresponding assumptions:

- 2 log pr(Z+(3)lQ(j))

=~ 2 log n 1 . pr(z, IZ.(a_l),Q(j))
.. (.) 1o 1
1eizmI’) fo <oz
such that such that
Z.(J) # ¢ Zia 7 ¢
i
_ :E: (3)
= L.
. i ' 4.
such that
2(3) # 4
i
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is the measure of overall goodness of fit of the geolocation data

(3)

for partitioning Q to all the track sets (determined by Q(J)).

(a-1)

(zialzi ,Q(J)) represents the random variable of goodness

of fit of the geolocation data for partitioning Q(J) to track set

i at t, (based on previous data), and

S (@) ,(3)
Lia = Lia (2,7 700770)

(a—le(j))

af

is a measure of goodness of fit of geolocation data at t, to the

ith track set, with respect to Q(J).

Li(J) is the ith track set goodness of fit of the geo-
location data for Q(J) (corresponding to target i, the index i
being unknown to the observer), and is given by

(3) o (3) g () ()
L, =1, 9, 9,00

at -21log pr(Zi(j)lQ(j))

= Z L., . ‘ (4.4)

02223
such that
ziu# 3

For a=0, (Zialzi(a-l),Q(J)) may be interpreted as either
(3) Co : (-1) (-1) ,(3)
aiolo ) or using information Zi - as (Zio|zi 'Q770),
If 2., #¢ and Zi(a_l) # ¢, then since Xi(u’,.vi(a) and
(a)

hence z; are all normally distributed (see subsections 2((5)),
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'2((6)))., (ziulzi(“-l);Q(?)l is distributed normally

(3) (3)
Nsia(uia J 2, (4.5)

where

(i) = ,(3),, (a) _(3)
viu = ¥ (Zi 0 )

ia
af (a-1) L(3)
— E(Zialzi(.) IQ )
= . g W3
= ?a xi;a—l,a ’ (4.6)

=26

= Cov(Ziulzi(u-l).Q(j))

T

Fa ' Ai'&lﬁ'a ) PG + Ba : (4.7)
1 . h 1

“;3) can be considered to be the optimal estimator (since, e.q.,

it is both the minimal expected normed square and posterior maximum

likelihood estimator) of X, based on data Z(Q-l), for given
14

o
3 (3)
partitioning Q(J). In addition, it also can be shown that Z.j

i,a
). (See

. . . (3) _ (3)
is the covariance matrix of error: zia = Cov(uia— Zia

Ref. [25] for these and other related results. For convenience, the

dependence on j, for a<j is not indicated for the i, A and related

terms below.)i

~

xi;a-l;u

- (a-1) (3)
xi;a-l,a (Zi » Q )

.af (a=1) . (3) ,
CE=EE Glzy , Q00 . (4.8)

= optimal estimator of

. (e-1) (3)
xia given Zi and Q ’
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- (a)
Ai;c-l,i Ai:u-l,a(o )

af (a-1) (3)
COV(xialzi : Q )

~N
= Cov(X

i;a—-l,u- xi,u) (4.9)
= covariance matrix of error between
X a x
xi;a-l,u an ja’
N - .
i,0-1,a and Ai;a—l,a may be obtained recursively as outputs

of the standard Kalman filter (for linear Gauss-Markov data measure-

ment and target motion models - which is the case here; see, e.gq.

Ref. [26)). For completeness, these equations are presented below:

and

Define for all j2a2 0, for given Q(J)

A as (a) (3)
ira,0 — EXg o127, 000 (4.10)
af - () _
_Ai?(!,(l == COV(Xi;u'a Xi'a)
= cov(x, | z.(®, o3 (4.11)
ie i

Then in the notation developed here, for given Q(J); 0<ac<j

A

xi;a,a+1 = £d+l.xi;a,a ’ (4.12)
A =&, 41 3 T 4G P G (4.13)
ija,a+l a+l "iz;a,a Ta+l o+l "a+l “a+l’ .
A
&17“ G = xi:a-—l,u + Ki;a.vi;c ’ (4.14)
aT. -1 3
,'Ai;u-l.u. ?a i,a’ if Zi,a# ¢
o = Ky, E (4.15a)
Q 4 0 ’ if Zi,u= ¢
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) i,e,e’a "o ,
0 3 if Zi’a = ¢
(o) (3) . . .
v = Vv
isa i,0 (z; "7, Q77) (innovations)
af
_— Zi'u = ul’u ’
-1 -1 -1
B, *R B, + 4, f . ¢
Aica= <
”e : P
i,a-1,a o 3E 2= 0
(Im*Ki,a'?a)'Aj_;a—l,a ’ if Zia?ﬂ}
=
Ai;a-.—l,a , if Zi(,:d’

Then combining the results of (4.3), (4.5) and (4.16)

. Lia = Lia + Lia ’
where’
» -— -~ (j)
Lia = Lia (Q )
af .
-— Ss. log 2 + log det zia

= non-random goodness of fit geolocation

data term for track set 1 at ta, with

respect to Q(J)

ti = (3)
and (noting . =s, (')
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(4.15b)

(4.16)

(4.17a)

(4.17b)

(4.18)

(4.19)




. o1 (@) . (3)
af ,T .,y -1
- via ia | vic (4.20)

= random (quadratic in innovations)
goodness of fit geolocation data term
for trgck set i at t;, with respect
to 03; 0<a sy

It should be noted that a nontrivial trade~off exists between
the magnitudes of Lia and L”Eg . Thus, for the same data set

L] ’ L]
z+(3) r if Q(J) is a partition withmany relatively small (or one

ool 4
point) track sets and qu) consists of fewer but bigger track

sets, it is not clear which is larger in general: -Zlogpmiz+(3)|6(]))
or -2 1log pr(z+(3)|3‘3)). In particular, disregarding the inno-

vations wia's and the sizes of the track sets (proportional to

the sic's) - which also really play a role in these trade-offs

0t
for Q(J), the Eia's will tend to be larger (in an eigenvalue

‘a .
or matrix ordering sense) than those in Q(J), due to the

(a-1)

COV(xiu|Zi , §(3)yg being larger (less data reduction for

the same target); thus the Lia's in general may be larger for

° (3) 0o(3) S Y
Q than for Q'”’, Yet this implies also that the Zia s

for 6(j) will be smaller and hence the L‘iu's for 6(j) will
be smaller than for 60_(:‘) .

In order to evaluate L‘ia and L“ia, the determinant and
multiplicative matrix inverse of Eia must be obtained. The evalua-
tions of these quantitites, as well as-the implementation of the
Kalman filter equations - (4.14) - (4.17), in particular - are made
more efficient by considering the relative sizes of S§ .0 and
m, for each a; as a consequence, matrix inversion and determinant

operations can be applied to matrices no larger than min(si 0’ m)
14
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in dimension.

Specifically, if Si 4 > ™ then for (4.17), (4.17a) may
’

be used; for (4.15), (4.15b) may be used resulting in a simpli-

fication for (4.14). In addition identities for z;i and

log det xia can be used. (See, e.g., Ref, [25)], Chapter 1.)

Thus, multiplying out the block forms for the matrices involved

(assuming 2z, #¢)

_ -1 -1
Al?a,u (Diou + Ai:a-lpu
— 'Y v * -1
“h.a-1,0 Tm Y PigtMe-1,0
_~-1 _ . -1
= Di, {1 (Im + Dia Ai;a-lla) } (4.21)
where
af ot _ -1
Dla - ?a .Ba By
i i i
T -1
- N . B R *'B (4.22)
l_;;;q af “af of
such that
Ziap 7 ¢
jsa a0 = xi;a_l'a +
A . -
139,89 2 LIS PR
1<g <q ’ = A
such that
. A (4.23)
l,a,8
where
af
— z- - - .
vi,a,B i,a,B ul,a,ﬁ ' (4.24)

(innovations for target i by sensor system 8 at ta)
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s .

(a-1) (3)
Vg a,8 = B3y o olZ e @°70)
= Bc B °u-1,u ’ (4.25)
zzla = R;l'(xs -Ba .Ki a)
’ i i,a i ’
=[A,. ... . (4.26)
(llulB '8' 1|<-B"B~=q
such that
Z. L F e
1,a,8 #
zi,a,B” ¢
where
af -1 -1 ., . T S |
izars”, 8~ — %8-,8~ Rap- " Rap-"Bug-"ti;a,a"Beg~ "Rag~ (4-27)
§.., .. 1is the Kronecker delta function (i.e., 6§_. _.= 0,
B”,8B B“,8
if B #8~; 6,. z.=1, if B* = B9.
B”,B
Hence, (4.20) becomes
T
~ = v L3 «V
L ia E i;a,8” Ai;u;B‘.B” ije,8”
1£8°,87%q
such that
z2. .. 7,
1a§ 4
1:0,8 as l;a,B
l<8 2qg
such th;t
ilavﬁ ¢
T —1 . sT .gp1
:L a,8”° 0.8‘ BaB' Ai;u,dBuB” Ras.‘f vi,a,s“’
léB" <g™
such that :
8- # ¢ (4.28)
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Also,
log det Tia = log det §u
+ log det (Im*'Dia.Ai;a-l,a)' (4.29)
noting that
log det R = Z log det R , - (4.30)
o f1i8cq
such that
zicB 7 ¢

This yields a direct evaluation for L‘ia in (4.19).

jo &M, then for (4.17), (4.17b) is

appropriate, for:(4,15), (4.15a) is preferable, resulting in (4.14)
simplifying somewhat: '

On the other hand, if s

iem” (Im.-Ai;a—l,a'Fiu)'Ai;a—l,a ' (4.31)
where
asg T . . ,
Fiag = BuB' Ai;a;B’.B’ BaB”’ (4.32)
1 hs B8~ 9,
such that
ZiaB’ 7
ZiaB” 7 ¢
and .
- - ~ . T .
xi;a,a - xi;a-l,a + Ai;a-l,a 2: BaB' Ai;u;s‘,s‘”wi;a,s”
l< 8987 <q
such that
' Zia8™ .
. 3
where the Ai;a;B’,B” s (ras, by raBA) are determined from the
block decomposition of 2;1 :
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-1 4af 4

: -> -~

1o =™ 5,48 B ) ’ (4.34)
1< 8%°B%<q
such that
ziaaa# "

~7# ¢

iaB

where in block form

Zia= (Gi;a;87,8~) ; (4.35)
1<8° ,6%<q
such that
ziuB‘ 74,
with
af . . aT
Gi;a;s’,s” — 68‘,8” RGB‘ +BQB‘ Ai;a—l,u BQB” . (4.36)

The main difficulties in the evaluations of Liu and L{;
for either relation between Sia and m are as follows:

For Siy >Ms eq. (4.21), e.g., requires matrix inversion (of
size m) and eq. (4.29) requires a computation of the log determinant

for an m by m matrix (the second term).

For Sia <™ z;i must be obtained, preferably in the speci-
fied block form of the Ai'a-a‘ By's' (see egs. (4.34) and (4.35))
[ A ’

and log det :. must also be evaluated (I, is of dimension s, ).
ia ia ia
In Appendix A, two iterative techniques are presented which
can help in resolving these computational difficulties. The first
is a procedure for obtaining the inverse in prescribed block form
of a positive definite matrix also given in the same form (for a

general number of blocks). The second, similarly, obtains the log

determinant of a positive definite matrix in block form,
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Some simplifications for the computations occur when

i.e., are constants for all B8 such

B and R = R
o

B a0’
# ¢, (This is not too unreasonable an assumption, since

a,B s BaO
that zias
this still allows the sensor systems independent operations, but

with the same general measurement characteristics.):

Let
- af
'y 0 T— . 1 ] ° * . 4'37 .
qlaJ ) Z ' ¢ L
1< kga \.
such that
Zi,jkf ¢
Then
_ . T, vl.
Dja T 9i4'Bao"Ra0'Bao (4,38)
and eq, (4.21) simplifies accordingly;
2. = ﬁ' +q‘ .A- .BT .R \’
ija,a ija-1,a ia “ijasa "a,0 a,0° z: i;a,B8’ T
l<8z4q
such that
Zias"" (4.39)
and egs. (4.24) - (4.28) simplify slightly. Also, (4.38) and
log det_ga =_gia-qu det Rm-O | o (4.40)

i
somewhat simplify (4.29). Egs. (4.31) - (4.33) and (4.36) also
simplify slightly.

The special case of one sensor system present (i.e., q =1)
shoyld also be noted. 1In this case, using similar notation as be-
fore, either qia=l or 0, depending on whether Zial#‘b or
zia1==¢' respectively. Since 2, = ¢ means no geolocation measure-

ial
ment is made of target i at ta by the only sensor system present,
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@ Cig ia

is not calculated here and in effect Li

Thus s].n= ria.

Liu
Consider then 2 iel # ¢

For ria >m:
(4.41)

_ T -1
Dia = By1 Ry B

ia
with (4.21) remaining formally the same;
X = X + A BT R . v, (4,42)
ija,a ija-1,a i;apa 0l @l "ije,l , *
“ija,1 = %io1 " Ba1"¥ija-1, ¢ (4.43)
-1 -
zi,u - Ai;a;l,.l
_ o1 _ -1, . R ) §
=Ry " Ry1'Baa Ai;a,a By Ry (4.44)
L, =vl A "A (4.45)
ia ija,l Tiza;l,1 Tije,Ll ’ ° -
L‘iul = rialog 27 + log det Zia’ (4.46)
log detzia = log det R , +log det (Im"'Dia'Ai;a-l,u) (4.47)
For T igil:
F. =BL-A +B (4.48)
ia el Ti;a;l,l Cal *
with (4.31) remaining formally the same;
~ ~ ’ T .
xi;d,a.f i;a*l,af*Ai;avl,aBal'Ai;a;l,l vi;a,l (4.49)

equation (4.43) remains the same;
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zia = Ai:a;‘l,i

— T —1 -
= (Ryy + By, Ai;a-l,uBul) g (4.50)

. = . : pT
log det I, = log det (R 4 +B_ , Aiia-1,a Ba1) ¢ (4.51)

with the equations for L*};a» and L‘i'a being formally the same
as (4.45) and (4.46), respectively.
The next term considered in eq. (4.1), - 2 log pr(zocj)lQ(j)),
is the goodness of fit of the false alarm data to Q(j) (or vice-versa),
0exj
Note first the relations (a consequence of the assumptions in

subsections 2((3)) and 2((6)):

(3) |~ (3) (3)
pr (2 Q") = I n pr(z 0-"), -
such that
ank# ¢
where if zOuk # ¢, fak > 0, then
fuk ;
(3), _ (3)
Pr(Zgy l0'"") = m:& pr(zoqkw‘Q )
% R
= Y 1 z .e 0%k, (4.53)
(2m) 0K OK/2. (get my ) *F/2
fak
daf T -1
Roak = 2 (Zgake ~ %ax) Max Poakd Cax’
w=1
= L‘Oak + L”Oak ' (4.54)
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Lﬂ

= L

0ak = “"oak Zoak’ 9’

£
ak
ag | = T -1 .
- ééi Zoax " Zoak’ Mak Poax ~ Zoak’

R |

= 80k M) v

(4.55)

£

ak _ _ P
Y Zoax ~Zgax) Zoax " Zoax) ¢
w=]1

Oak (4.56)

(4.57)

(4.58)

(Equation (4.54) follows from the standard procedure of adding

and subtracting Z

Roak
alarm set
0 <ag3d

Ll

system k

sample covariance of the false alarm data and 2

mean, for

L”

Oak

Oak

0ok within the sum.)

represents the random (geolocation) fit of the false
(3)
’

for sensor system k at t| with respect to Q

measures the scatter of the false alarm data for sensor

at t, with respect to 0 ; S is an unnormalized

Oak
Oak 1S the sample
sensor k at ta.

measures the bias between the observed and predicted
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false alarm data means, for sensor k at ta (with respect to
Q,) -
Then, if we define, finally,

= .~ . (o¢3)) (4.59)

L 00k 0ak

af .

it fak '(rak log 27 + log det Mak)’

a measure of the non-random goodness of fit of the false alarm set
for sensor system k at t, with respect to Q(J), then (4.52) -

A
(4.55), (4.58) and (4.59) yield

- 2 log pr(Zo(j)lQ(j))

= Z Z Logk ¢ (4.60)

0 aj/lik=<qg
"(such'thaa

AZoax ¥ ?
where
Logk = LOak(ZOak'IQ(j))
af£ _ 2 log pr(ZOleQ(j))
= Roax * L0ax
= L‘Oak+L‘(’)ak + ”(')ak' (4.61)

LOclk measures the total goodness of fit of the false alarm set
for sensor k at ta with respect to Q(j), 0<a <3j.

Computational problems for the false alarm scores appear
minimal; the real difficulty lies in the modeling - specifically

: 3 J - '
in the choice of eak s and M,k S.
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The third term considered in eq. (4.1) -2 1log pr(¥‘3|e!3)y,

is the likelihood (or goodness-of-fit) of the non-geolocation target
attribute data with respect to Q(J).
It follows from the assumptions made in subsection 2((7)) that

(3) (3)
pr(Yy, IHi. Q')

pr(y, . |H,, o(3y . (4.62)

Then

2 log pr(y{3) ),

~210g ), pra@u, o)) .prmtd,
over all
outcomes

of H(j)

such that

where

(3) _ , (3) (v (3) H(D)
L, = L0 (¥ 70,00

ag - 21log pr(Yi(j)lQ(J))
_ (3) (3) |
= - 21log( pr(Y, |H,,0"°") pr(H.))
overzall 1 1 1
g?ﬁfoges of (4.64)
i

In addition, note that

29\ |, -
pr( |Q(J)) = Il (4) pr(Zi(J)lo(J)) ' (4.65)
y (3) 1<i<mtd
such that
(3)
Z, £ ¢
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pr(z, o3 - ), (4.66)

The goodness of fit of overall data density at time t,
with respect to Q(j) is analogous in form to that of the geo-
location only data given in (4.2) et passim, and can be decomposed
into a product of two factors, one representing geolocations and

the other non-geolocation attributes:
(a-1) (3)
pr(zia| zi ’ Q )

(a-1)

= pr(Zia|Zi , Q(j))'pr(YialYi(a—l), Q(j)) (4.67)

(provided Zia # ¢ and Yo # ¢ for some 0<a < 3j).

Also
(3) _ _ (a-1) (3)
Li = 21090<2<j pr(Yimh{i , 0O )
such that
Yl # ¢
= > -2 1og pr(y.alY.(“’l). 03,
0<a<3 et
such that
Y. #¢
= L, (4,68)
O;Za:;j fa * |
such that
Y. # ¢
where
— (o) (3)
Lia - LiG(Yi ’ Q )
af 5 10g pr(v, |y, (@1 (i) , (4.69)
iat1 '

noting for 0<a<j

55




(a-l) (j) (a-1) . (3)
pr(y, |Y pr(y; |H,Y @37y epr(u))
ia’71 ver all l 4 i
outcomes
of Hiec (4.70)

If a and b are relatively small integers, by using the
(known) distribution functions of the Vijk's or, equivalently,
the p(Y‘,Y*?Q(j))'s, and eq., (2.4) (see subsection 2{((7)), then
equation (4.63) can be evaluated. However, for relatively large a
and b this may require - because of the discrete nature of the

distributions involved - a large number of operations. Consequently

the following approximation is proposed for the modeling of the

random variables Yijk and Hi' for either relatively large a

and b, and/or when the non-geolocation attribute set C is per-
haps better modeled as a contiguous subset of b-dimensional Euclidean
space:

In equation (2.3b), assume each Vijk (for Yijk # ¢) is -
normally distributed as Naijk(o, Rijk)’ where Rijk is the

submatrix of R, corresponding to outcome T, with respect to

ijk
{1,2,.., b}, R being a fixed (positive definite) matrix of dimen-

sion b, to be determined.

Define, analogous to R, ,

For only
l<kzg
such that
Yiak 7 ¢ *
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Replace equation (2.4) by:
Hi is normally distributed as Nb(E(Hi)' Cov(Hi)), with
E(Hi) and Cov(Hi) to be determined in relation to attribute set

C. The following trivial identity is used here:

H. for all times ¢t

i, ) = Byr a” (4.71)

From now on for-given time t. -and Q(j), the function

dependency of quantities on ol wina be often omitted, unless

ambiguity results or emphasis is desired.
Then to evaluate Lia' a Kalman filter can be applied to
(2.3b) and (4.71) yielding, analogous to the computations for

Lia (see eqs. (4.5) - (4.20), for O < a<j, for given Q(J):

A

A
Hita,a41 = Hiia,a (4.72)
[od -~
Aisa, at1 = Pija,a (4.73)
H H v (4.74)
i:a,a - Hi;a—l,a+ Ki;a vi;a 2.
~ T ~¢1
JAi:a-l,a'ia "L, f if Y. #¢
- ' (4.75a)
ija ‘0 iE Y. =4
' ia
\
~ T -1 )
lja,a Ea i §a SRR )
= (4,75b)
| ° o if Yia = ¢
T _ 1 ~-1 -1 )
(Bi“ iga "Byt Aiio1,q) y AE Y, # 4
Xi'a a (4.76a)
Qg ~
iza-l,0 R T
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et e G P BT . Ty i
K, +B)°A if .
r (Ib- 1,0.10) isa=1l,0 ' Yia ¥e
;a-1,a , 1if Yoo = ¢
~ daf
Vija = Yic"ga'ﬁi;a-l,c (4.77)
~ af Y r T
zi,d = gu' ija-1,a'8a * za . (4.78)
Then
Lig = Lia * Liq ' (4.79)
where
L at 4 +log 27 + log det ; (4.80)
ia ia ia ' *
af
4y = 1;{':;(1 %iak ' (4.81)
such that
Yix? ¢
" £~T ~~-1 ~
L% = Via * Zia "Via . - (4.82)
Analagous to the cases s, >m Vs. s§; <m, to evaluate the
above equations, we must consider separately the cases Aia>»b
and Aic;b :
. For bia>-b, use egs. (4.76a) and (4.75b), obtaining
v ~-1 -1
Ai;a,a - (Diu + Ai;a-l,a
Ai;u-l,a.(Ib + viu'Ai;a—l,a)' (4.83)

etc.,
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p, df g T p-1lp

ia ia ia i“
- T -1
Z BiuBRiaBBius
l<8zq
such that
1“8 # ¢

: B +
ia,a ija-1l,a

Ail“pa. 2 ( ;'r
1<B<q a8
such that
Yich * 4

~ ~df
vliaB ==Yiu8‘ laf ija-l,a,
~_1 _1
T =R ° (1, . =B K; ),
ia ia 61(! 1 i,a
= (A.o . 4. ”)
i;a;B%8 18”8 <q
such that
- # 9,
as -l -1
Ai:G;B',B”:== 68‘,8” RlaB‘ RlaB‘ B aB
. T
Lia = i;08°44;a,8"
1<87,8"zq :
such that
YiaB' 7o
YiaB“"‘ ".

etc.
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iag "Vija,8 ’

~ 2
"Ai;aa B'l:‘i.aB’"RiaB

o,

e

v- .l
,8% "ijaB !

(4.84)

(4.85)

(4.86)

(4.87)




log det T - de
og det Li, ™ log' det Ra

i
+ log det (Ib*fpia.Ai,awé,u)' (4.88)
log det = \ .
g de E“ :Z‘ log det Riag (4.89)
l<Bzq
such'that
1u8 7

Suppose now R is in diaéonal form:

ri. 0
af .
R= N (4.90
I )
Then .
]’.'
1Jk 1
Risk = (4,91)
bl]k ;a. i3k
recalling
Tij = Pigp,pr- bisksay S (Leeerbl,
Also,

where

T -1 1a8 ;\\\\\J
BlaBRJ.aB 1a3 . ' (4,92)

laB b

diapy = (4,93).
l/r , if vy ¢ TluB
[
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for 12v<b.

Hence,
d'
o, =[ &1, :l , (4.94)
ia ‘d
[:::}; ia,b
diuY = 2 diaBy = (}/fy) . 1 (4.95)
1s8s5q lx824q,
such that such that Y, # ¢
Y. # ¢ .108
iap and there is an n,
l<ns<b, such that
Y =bia8n € TiuB
for 1lgv<b.
gia8~i
T =1 =~ - . ‘
aia iag vi;a,B = g ’ (4.96)
iaB;b
0 y If vy ¢ TiaB
where gian g£ - . (4.97)
(l/ry)'vi: . Bsn * if v = biaBnE:TiaB
A
iag:1 " Hi;a-1,a5b
r r [ 4 14 iaBl
~ .
~ vi;aB;l ( |
where v, = . = _ & 4.98
iag ot * Y:'u:r.B;a:.mB Hi;a-l,u;biaea
i;a'B;aiGB iGB
for
A
a at [Bi,a-1,0;1 g af [ i (4.99)
i,a-l'a = A : ’ i - : ' *
Hi,a—l,a;b Hib
and
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af *
Also, letting in scalar form
1, = (A, ]
- lra,a ( 1;a,azy "Y”?liY"Y”; b ’
then
”ne
7T ~
Bi“.B‘ Ai;a,a BiGB“= (A, .o
ija,a2y" ,Y Y'ET .
iaB
Y eTiaB“
Note that aiaﬁ
log det R, . = 2 log r
ied 229 biag;n
= log r *
¥
YeTiaB
For Aiu;b,
i;a,a = (Ib —Ai;a—l,u.ria) i;o-1l,c
where
af
o= 2, BY A, ., .B. ..
ia 1<858~ <q,\ iaB” iaB”,B iaB
such thﬁt i
YiaB’# !
Yiag-? ¢
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(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)




1<8°,8" <qBi°‘3 iia;8°,8~ "ija,B"
such that
Ylas‘ 74
R (4.106)
T, o= (6. . o)
lu 1,0,8 'K“ 1;8‘,8’;‘;, [ 4 (4.107)
such that
Yius“# ¢
cdf _ g T
Gi;u:Bx‘,B'ﬂ= GB:BM Riasq""BiaB; Ai:a-l,a Bia.B” (4.108)
Further simplifications can be carried out, since R 1is in
diagonal form.
For example, if
Aiiaig 8=~ “@ia:87,8%n" 0~
1< n ;aiaB‘
1< n 233,8~ (4.,109)
then
T _ .
BiaB,'AiaB‘Bﬁp BiaBM (.hi’a’s"sy;Y"YA) ) R
l<y“iy*<b (4,110)
where .
o af (0. if v° £ Tiag* ©F Y°¥ TiaB” {
! h‘ - P - an == - (40111)
: 1aB”,B% vy ,Y" .1 s if
L i;a;8°,8%yn",n"~ !
Y = biypen- £ Tigge &
k Y7 = Dyagept T
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S8imilarxly, .

T o~ i?B'B”l
aiuB".Ai;u;B_‘-,B"".\’:i_;ag“'== P . ’ (4.112)
iaB°8 b
where
[~ .
p - 0 ’ if YfTiaB,
icQ’BMy o
a. ~a
iaB ~ .
ai'a,e;sa" n" ﬂ" .vi,u,B”,n” ’ lf
n*=1
! Y =bigone € Tioge o (4.113)

Alternatively, Li(J) can be computed directly using eq. (4.71)

and the fact that (v, 3 ]o(3)) is normally distributed witn

ey, 3199y = g3 g, (4.114)
1 i A
and
. . . T .
Cov(yi‘J’IQ‘J’) =83 .covn) .53 423, (4.115)
i i i
where
B R
8o R0
(5) ag| B (5)- af Ry
gld) af( {314t i (4.116)
i % * .'R-
iJ i
Let
(3) df §: (4.117)
8 i == flr y.) ia : .
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and assume Aih) 2b. Then

3) _; (N~ (3) ~ ,
Li = Li + Li ’ (4.118)
L 4L 4 )09 20+ 10g qet cov(y, (3 o3 (4.119)
sy A : . . . :y —1 . : .
Li(J) af (Yi(J) _ E(Yi(:’)IQ('J)))T-COV(Yi(J)IQ(J)) ,(Yi(J)_E(Yi(J)lg(J)))_

(4.120)
Analogous to eq. (4.29),

log det Cov(Yi(j) |Q(j)) = log det R (3) + log det (Ib+ D(j) -Cov(Hi))., (4.121)
i i

p @) gt G 2 5D

1 i 1 1
= f: 0. , (4.122)
«=0
(3) < 63),~1 (3) HT 7t
Cov(¥;*-'|017)™" = (B cov(H,) B + R
SRR, i i i
O . -1 .. -1 . ,.~1
= /3 TR TR L eouqm,) 003y OVLRGYT
i i i e i i
(4.123)
where
(4.124)

'I .
Ro '
R(_j) §£ ’ i .
1 ‘0 s
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T -1 . J -1 '

(3)° o)™, o (3) p e () (a3 = T ., - '
5K (¥’ -e e 2;% 1‘}§;<q Biak Rigk” ik B ¥yq5l9
such that '

Yiak 7 ¢ (4.125)

3y _ o .
E(y, lo*'h) = ga E(H,) ,
and (4.126)

By, 109 =5 BH); 1cikcq .

iak

. . . -1

iy, 3 gy g
Ry e P

~
3

3
= - (3)y,T, =1 | 7 (s (3)
) 2;% ;gféﬁ§ B0k Q77 T Ryt (B B el . (4.127)
suchtha;)
Yiak 7 ¢

then, 1,3’ can ve evaluated by using (4.122) - (4.127) in
(4.120).

I1f, furthermore, R and Cov(Hi) are diagonal, additional
simplifications can be achieved by use of (4.90) - (4.95), replacing
Siiass DY Yy E(¥y J0'9) in egs. (2.96) - (4.100).

An approximation for Li(j)", the computations of which do not
depend on E(Hi), which is more accurate for larger (in the positive
definite ordering sense) Cov(Hi), is given in Appendix B. Thus,
using the approximation no knowledge by the observer is needed of
E(Hi) and Cov(Hi), except that for all i, Cov(Hi) exceeds a ceftainr
fixed large bound. |

When Cov(Hi) is diagonal,
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5. SOME DISTRIBUTIONAL.PROPERTIES OF THE SCORE

As in the last subsection, it is assumed that the prior dis-
tribution of Q(j) is uniform so that J° and I* need only be
considered.

" Then from egs. (4.1), (4.2), (4.4), (4.18), (4.19), (4.20),
(4.60), (4.61), (4.59). (4,.,54) and (4,62) - (4.64) and the assumptions
made in subsection 2 (J‘(Q(j),Z(jle(j)), as a random quantity
functionally dependent on Z(j), is distributed as the sum of a

constant, a chi-squére random variable and a statistically independent

discrete valued random variable, Specifically,

3-@,23) = 3;9) + 3500, 219y 45500 ¥ D) (5.1)

-tald),y daf ’

Jjloh) = ) Z L?
léiiMJ 0<ax<]
sugh'ihat Z5, 7 o
203 # 4

LD DU DR 19 (5,2)
0<ax<j flzkzqg

such that
ZOak 7 ¢
is the constantterm;
-t (d) (j), df "
JZ(Q ), 2 ) = 2 () Z Lia
lgjngM'j <

1< 0<ac<]
such that such that
zi(J) £ 4 J\Zig 7 0

+ Z Z Rook (5.3)

0<az] l<kzqg
such that
ZOak 7 0
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(since all (L{“IQ(J))'S' are distributed as xi statistically
ia
independent for all (i,a)'s and statistically independent of
2 ) is dis-
.x

all (ROleQ(J))'s which are distributed as X
ak Tak

tributed as xg : Where
J

4
:E: (3)

l<iz<M 0
such that s
A

(5,4)

G,y & v B) i
l<1<M(j)
such that

(3)
Y. # ¢

has a discrete distribution.

Under the normal approximation made for (j)lQ (see the

results following eq. (4.70), especially (4.113) - (4,115)),it follows

that the discrete valued random variable J (Q(]) (J)) is replaced

in the sum comprising J° (Q(J), (3)) (eq, 6.1)) by

:E: . (Li(j)‘ + Li(j)’3 (see eq. (4.113)),
liiiMU
sﬁéb‘%hat
Yi(J) # [
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vhich causes an adjusted computation for J-. J'(Q(j),z(j)lq(j))
is now distributed as the sum of a constant and a chi-square random

variable. Specifically,

where
aegn(3)y, A€ .. (3j) (j)-
It =37@Y) + i (5.7)
I;i;MJ
suc@ that
Yi(J) £ 4

is the constant term ;

J;(Q(j’,z(j))"gi_J'(,Q(-j)-',z(-j)'l-+ E L G~ (5.8)
2 - (5)\ 1
1eicn®
such. that
(3)
LR

is distributed as xi » where
3

- (3) (3)
nj nj (Q y 2 )

af (3)

- Ej + Z (3) 6j_ °
l;i;Mj
sucp that

(5.9)

o . oo . :
It should be noted that if Q(J) # Q(J), the distribution
'] . [ . o 00 .
of (J’(Q(J),Z(J)HQ(J) = Q(J)) is in general not obtainable in a

simple closed form - even under the normal approximation made for

70




for

zlal

:

(¥,

(2.2).)

subsection 2((8)) for use of notation), where for each

= Z,

This is due mainly to the mismatching of covariance

matrices of formally assumed data model by the correlator tracker

o Y o0 .

through Q(J), with respect to the actual data model through (J).
For example, in reality let gq=1, j=35, ZO(S) ¢, Y(S)s ¢',
0, B =B ,=Bj,, I;qualsRm. (See eqs. (2,1) and

1

Thus no false alarms nor non-geolocation attribute data

are truly present and all observations and target motion are homo-

geneous and stationary.

Suppose also that only (geolocation) data Z, 0. 1 # o,
10y

«a=0, 1, .., 5=3j is observed (see the concluding part of

@, in general

ial’ i = i(a) an unknown positive integer.

Suppose now the observer uses a correlator-tracker determined

0 _
(5), consisting - of a single component o, 3

by partitioning Q Ql .
o
Ql(s) = {(l,a,1)| «=0, 1, ..,5}, corresponding to
(a) - =
z2, {Zl,a,l!“ 0, 1, .., 5},
o
Now if Q(S) = Q(S) >really holds, then without loss of
generality, 2y 4 = Zi41" %= 0, 1, .., 5, and the observation and
target models in egs. (2.1), (2.2) combine to:
z ' B
101 0l V101
Zyia | = [ Bor'% | *102 Vi1 (5-10)
' Z B.,"¢ 5 vV,
7151 01 ‘0 151
L—w————' e —
=z s
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jloldinq (8(5) being normally distributed)

. |
£z'® [0®)) = BeB(x()

b T 5)
Cov(z(s) |Q(5)) = BoCov(XIOI)-B + Rl( .
Now, J° (6(5),2(5)) = L1(5)(6(5)' 2(5)) has random term (see

eq. (4.20)).

e (5) ,(5)

as .. 2(5) ,(5) 11
_;LM(Q , 200 (5.11)

= v T;Z oV
- & 12 7712° "12

@™ - ei@®y)Tcoviz® -2 —eizB)

[
(conditioning here is on Q(S)).

5(5) 7(5)),8(5),

Then (5.10) and (5.11) imply that (LS(Q is
distributed as xz » where now
5
5 ,
Eg = D Si.- (5.12)

a-

o0
(3) . Q(S) really holds, where

On the other hand, suppose Q
now

®(5) df %2 (5) 2 (5)

0, = (e, a=0, 1,21,

0, = (2,0,1) |a=3, 4, 5} .
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Thus 8;(5) corresponds to jzlullq=0.l.2} = 1zla1|a=o,1,2}

? (5)

and Q, corresponds to {22u1|a= 3,4,5} = {Zlq1|a=3,4,5}.

This yields from egs. (2.1), (2.2) the combined observation

model:
%101 \ _ Vio1
Z1n / i O X0 Vin
2121 S N : 1 Vi
z O B X v
231 ' 231 231
Zos1 Vosa
\ 2251 Vasy |
_ (5) (5.13)
Bo1
')
where B g 01-¢ .
2
ol ¢

But, since here

" B “E(Xy0,)
E(Z(S)IQ(S)) =( 101 ., and most importantly

-T 1
(5) . %(5) Bicovixyo ) E” 1 O )
Cov(z'7'jQ ") = ~—mmmmemmmmeeee T Iatate ot Ry (5.14)
o R Cov(X231)5
(4
does not match in shape (nor size) Cov(Z(s)IQ(S)) which is the central

.factor in the .quadratic form in (5.11), it follows that
°(5) ., (5), ®(5) : : : ' i -
(LS(Q , 2 | Q ) is not even distributed as a noncentral chi
. . . . 2(5) ,(5), %2 (5)
square random variable; hence neither can (J-(Q ' Z )|Q ) have
a simple distribution.
Note that, by similar reasoning, if a correlator-tracker is

“(5) (5) ,(5),15(5),

used which formally assumes to be true, then (L5(Q ’ )Mo
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(5) (Sll

)
is distributed as x: as in (5.12), but, as before, (LS(Q(SI,Z e
5

has a complicated (non-chi-square, non-noncentral chi-square)
distribution in general,

Consequently, in general, for Q(j) #0 (3)

since we cannot
A, 00 <
obtain a simple computable distribution for J (Q(J) (Jllo(Jl),
d‘

similar remarks hold for the difference J J° (Q(J) (-j)),-.J'(?)(j),z(j)),

conditioned on Q(J), Thus, the computation of a threshold T (see
eqs. (3.8) - (3.10) based only on a given significance level of
discrimination B8 (obtained by solving B8 = Pr (Decide th)ln(l) true) =
Pr(J T'Q(J)) for T) appears equally infeasible.

In summary, J- (Q(J) 0(3))

can be used two ways in a real-
world situation:

(1) For determining how well a given correlator-tracker,
6(j)

o
through its partitioning of data really fits data 7}

f
by evaluating the cumulative distribution functionof the random
quantity (J (6(j),z(5))|6‘j)) at the outcome point J (Q(J) 0(3))
This distribution in general should be computable, since the random
quantity here is the statistically independent sum of ‘a computable
constant, a chi-sguare random variable with a computable number of
degrees of freedom and a discrete random variable which has computable
characteristics (theoretically at least, if parameters a and b
are small) (see egs. (5.2) = (5.5).) (An approximation based on
- simplifying thecomputationélburden for the discrete random variable -
term is given in egs. (5.6) - (5.9).

(2) For comparing two (or more) given correlator-tracker schemes,

operating on the same data. 1In general, up to an adjustment for
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different decision losses or gains and presence of prior distributional
information on Q(j) (see eqs. (3.6) - (3.10)), that correlator
tracker, determined by partitioning Q(j), is chosen among a given
set {6”),06(:]), ..,“3‘3"} say, for which J‘(Q(j),;(j)) is
minimal. However, the statistical significance of the differences
between the values of J‘(Q(j), ;(j)) for different correlator-
trackers Q(j) is apparently difficult to determine.

Note that using the distributional results in egs. (5.2) -
(5.5), for example, I’(é(j), 6(j)) is easily obtained as
2@, 09 = 5] @) 4 gy + B3, ). (5.15)

If the normal approximation is made (for Y(J)|Q(J)), then egs.
(5.6) - (5.9) imply

¥° evaluated as in (5.16) can be used also as measure of
.0 .
average performance of Q(J) (with respect to averaging the data
Z(J)) and can be used analagously to J° in (2.) for comparing

average goodness of fit of several correlator-trackers in guestion,

by choosing that one minimizing the corresponding value of I-°.
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SUMMARY

A simple scoring rule for correlator-trackers is developed
in this report. Mathematical-logical justifications for the use
of this score are demonstrated. Detailed computations necessary
to implement the rule are exhibited, along with a determination
of its statistical distribution, a form of the chi-square.

In the second part of the study, numerical examples will
be given illustrating the suitability of the scoring technique
for use in surveillance in a real world setting and leading to
sensitivity analysis with respect to the key parameters involved
in correlation. Future work will concentrate on both extending

the applicability of the score and obtaining further analytic

properties.
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Appendix A

Matrix Inverse and Log Determinant

f a Positive Definite Matrix in

Prescribed Block Form

Let G = (G..) be a given positive definite matrix in

1j l<i,j<n

. block form with all G,. assumed square. Thus all G;;'s are posi-

tive definite with G.T =G, . , etc.

1) )2

1 df

Let G -~ = (A..) , with the Aij's to be determined.

ij l1<i,j<n

Then
1. For 1l<ic<j<n

- 1

= T - o (1) .o (1)

Ajg = (85501 = 20 AgeGit )6y (A.1)
k=i+1

assuming the sum is zero for i=n, where for any 1<1i,j, kz<n,

. T

(G) . ¢ ()

Cik Cpi ™ -

For i =1, compute for j=1,2, j<kz<n,

(1) df
ij = ij (A.2)
For i such that n2i>1, compute for j=1,i+l, j< kz<n
(For i=n, 1let k=j=1i=n.)
(1) df . (i-1) _ (i-1) (i-1) -, (i-1) '
G5 ° = G5k 7 B,i-1 © Gic1,it1 7 %1, (A.3)
A-1




n .
2. log det G = 3 log det (Gigl)) . (A.4)
i=1

For i such that n>i>1 compute Gkgl) for i+l>k>j>1i.

(For i=n, let k=j=1i=n.)
The proofs of the above results easily follow by successively
applying the matrix and determinantal identities in Ref. [25],

Chapter 1, pp. 32, 33,




[

Appendix B

An Approximation to Li(j)”

Assume rank (§(j)) = b <A(j). Define
i .

[ ) ~df y DT, G) .y D)
1 1 1

1 4

where

g G) 4 ) pG) pGY T ) 7E
1 i i i i i i

Let

h. -£ mineig (Cov(Hi))

= mineig Cov(@.)

ij1 3J

hijz == mineig (?(J))

Then, for any arbitrary given ¢ >0, if
(3). Gy 2. -1),
hi >(1/hij2)-max(0,(|]Yi 'E(Yi  “/e hijl) 1),

then (see eq. (4.120))

0, 0)7 1. G
= i i
Proof:
Note that by using matrix identities (Ref. [25], Chapter 1: see
also eq. (4.123))




, ) =l . .y -1
Cov’l(xi(’)) ] Hi(J) - g3 .9(3).3(33 , (B-1) "
i i i "

where (see eq. (4.117)

s . . . . T
Q(J) = §.(J)-'-(?(J)'COV(Hi)'?(J)+?(J))-1'§.(J) . (B-2)
1 1 1 1 1 1
Then
()G ()7
i i i
- R RO g7 RGYE (5.3)
i i i i i
Since

R0 72 G) R ()7
i i i

A T .-k
< maxeig (R(J) 'Q(J)'R(J) )'I . (B-4)
i i1 0,0
(in positive definite matrix ordering sense).
Now
. N M
naxeig (R(J) ‘,Q(J).R(J) y
i i 1 '
. . .y -1 .
= maxeig (0 cov(n,) 0U) 4+ 20y ".p(3))
i i i i
- (3) -
= maxeig (Cov(Hi)' ? + In)
= 1/mineig (Cov(Hi)-?(j)) + 1)
i
S 1/(hi'hij2 + 1) e (B-5)




Noting that Hi(j)'B(j) = 0, it follows that
i
H gy, 0)y - H,(3).80).E(H,) = 0 and thus combining (B-1) -
1
(B-5)

(omitting the conditioning on Q(j))

L )T
1 1

. . - .
1D - por D Ponaxess @7/ thyhyp e 1y 12 B
1
‘e . 2
S R LA VIO R PR DO (B-6)




Appendix C

Flow Charts for Computations of the Score J-

The number of sensor systems is q, known and fixed.
At each time t., new raw data (possibly vacuous) Zj is ob-

served before Q(j) is determined, Zj = (ZY 3 k)

Y =1,..,mjk

k=1.,,,q
For each sensor system k, at tj, mjk;p is the known number of

data reports iy,j,k observed. (When mjk

¢ when mjk;=1’ only at most one report can

= 0, data becomes
missing, i.e., zyjk =
correspond to each true target - the remaining are false alarms.)
Also, Zij is decomposed into a possible geolocation (target or
false alarm - not known) data component Z‘ij, which if non-
vacuous is rjk by 1, rjk;=1 known, and a possible non-geolocation
target data component, Z;}k, which if nonvacuous, rules out the
associated geolocation component being a false alarm, and is of
dimension <b; C is the fixed known non-geolocation target attri-
bute set of b by 1 vectors, each representing a feasible evaluation
of b given attributes.

For each sensor system k, at time tj, Bjk is known rjk
by m geolocation target measurement matrix, and Rjk is a known
corresponding rjk by rjk positive definite measurement error co-
variance matrix. m = dim (Xi) is known; Xi is unknown ith
target state parameter vector. See Eqs: (2.1) and (2.2) for further

explanations and other related definitions.

Prior to tj’ partitioning Q(J'l), and target state parameter




vectors, one-step predictions from the Kalman filter are available:

X state estimator; and A » covariance matrix of exti-

1;j-1,3° i,j-1,]
mator error; 1i=1,2,..

Also, available prior to tj are geolocation scores Li(j’l)
i=20,1,.. (i=0, corresponding to false alarm set: i>1 corres-
ponding to ith target track set, determined by Q(j)), non-geolocation
.attribute scores Li(j'l), i=1,2,..., possible Kalman filter pre-

dictions for Hi - true b by 1 attribute vector of target i - as

Bi55-1,50 Aijy-1,5°
Also available prior to t. are the overall geolocation target

etc.

data score, -2 log pr(Z+(j'1)|Q(j'1)), the overall false alarnm
(geolocation) data score, -2 log pr(ZO(j'l)(Q(j°1)3= LO(jQI), and the
overall non-geolocation target attribute score -2 log pr(Y(j'l)lQ(j'l)).
Following, the reception of new data Zj’ based on all of the
old data Z(jﬁl) and the new, combined into z(j), and based on
possibly old partitioning Q(jﬁl), new partitioning Q(j) of Z(j)
is determined by the observer.
Once Q(j) is determined, then the total data Z(j) can be
decomposed as Q(j) ='{Qi(j)|i= 0, 1,2,...}, where the it track
set (target, for i»1, false alarms for i=0) is

Qi(J) = Zi(J) = {Z; .k |0<a<j, 1<kzql. The Z,,x' S are the same

as the Zyak's with the 1i's and y's replacing each other, except

for ZOak = Zoax = Zogks |:1;uy;f5k}' the false alarm set, where

£f., >0 known relative to Q(j). (A1} 2Z 's, as well as all.
jk= Oaku

]
Z,,k S» unless vacuous are, ik by 1.)




ey e

L = e -

Some of the ziuk s. may be vacuous (ziak ¢), 1in which case,
those are generally marked so, deleted from the set, and do not
contribute to the computations (actually contribute zero in value
to the various sums calculated). Relative to Q(J), i is formally

assumed known and Ziak = [--=7=- Z. is the T ok by 1 geo-

location data component and Y iak is the non-geolocation target
attribute data component - aijk by 1, Furthermore, random set

{b rc{1, .., b} is observed, and may

Tijx = Pi5%,10 -0 bijk;aijk

be vacuous, in which case aijk = 0. Without loss of generality,

. . ' }
li‘bijk,f"(bijkaijk;b’ Associated with the Yiak S are measure

ment matrix Biak and error covariance matrix R (see remarks

iak
between eqs. (4.70) and (4.71), and eq. (2.3) and following discussion.)

3 . (j) = (j) — 31 1.
Note also the notation: Z, =1, = {Zoak|0§J!;]}, false

alarm set up to tj; Z+(j) = {Zi(J) | i>1}, for the set of all

geolocation data Zi(J) = {Ziaklléjcéq; 0<axj (Z;,4 #6b of track

set i; up to tys for all i>1, and y3) - {Yi(J)Ii >1}, for

the set of all non-geolocation data of track set i, Yi(J) = {Yiakl

lekza; 0gaxj (¥, # ¢)}, wup to t,, for all ix1l.
For additional clarifications and definitions, see the main text,

especially subsection-2 of the Analysis Section.

whose. index.set .of -summaticon is the empty set-(¢), is'set equal to zero.’

. .The general -convention assumed:in.these -flow charts is that any:sum -

o




Begin

1) df g, Set j, > 1.

Define j, as the first j >0 at

sampling time tj’ for which

Z(j-l) =¢ & ZJ. # ¢. Hence,
Z(j) - 7

- Yes No
Form Q(j) and hence Set Q(j) = Q(j'l)
obtain corresponding Z(j) - z(j-l
73) gz, G) 7 () y(3)y 3-@Y)y, ;U)-

3.0, G-

_ Yes No
Thus Thus
(G-1) GG-1) _ - _ -
Z 7 ¢ i ¢ and hence ¢; 1=Cj 2=Cj 4 ¢

Cc-4




®
i)

2, 0) 4 D? <Zo( P (1O 4 0?)
Yes No ; Yes No Yes No

(Go to 10 > m <Goto 17 )

-210gpr(Z+(j)iQ(j))=‘ -Zlogpr(zo(j)lq(j))=o -21ogpr(Y(j)|Q(j))=o

X
\4?

Store: -2 log pr (Z+(j)‘Q(j)).

-2 1og pr(2,3)10U)), -2 10g pr(v) |oli))

Compute:

3@ 2 GYy

= -2 log pr(Z+(j)!Q(j))
-2 1og pr(z,3) |11
-2 log pr¥3) 00,

Yes No
t |
_ ... 2. .[ replace j
: by j+1 ( Stop )
\ "and go to

O)

S —




Geglocation Target Data

©

4 Ciq 2L til1gi g 2,00 # 4 51 4 €500 00000

= set of all track sets consisting of two or
more points which are obtained by breaking up
previous adjudged false alarms, given Q(j)# ¢

This is equivalent to: Z+(j'1) & Z+(J) ? .,

\

?

J

\\i.e. are some previous track sets broken up?
Yes No
[Use old outouts Note that Cj4 = ¢

(G-1) 1
L. for
* (Go to @,,@

@ to @,®,©,@

= -2 10g pr(z, I o0 1))

+ L..
~ 1
(1ecj1ucj2ucj3)

ATlso store all Li(j)'s and

Kalman filtér outputs, ;

Go toC§




\

\

U ali e ez, 00 D 0

= set of previous tgack sets which

will be nontrivially updated by

new data, given Q(j) 4)
X f

| Yes No] '
(Go to @'(C“ # @——

Set le = ¢

No _
and Cj4 ¢
Go to@D

G

- 2 1og pr(z, 3) QW)

3L, )

(1€C41UC;,UC; 5UC ).

J
Also store all Li(j)'s and

Kalman filter outputs

Go to ()‘




(¢ & ijncis 2, 0°1) - zi(j) # ¢ (and . q,)}\
iz j

= set of all previous track sets which will

be updated by predictions only (no new data),
given Q(j) g ,)

\_~ a2

= 4\
Yes | No [ Set ch ¢J
I 1 Yes
EDC| wse
féet Cjz = §
No _
and cj4 = ¢
\ Go to ()
9
af .. . i 1
(st = {i|1l<1i § Zi(.J) = Zij # ¢ (and Zi(J ) _ )}
= set of all new (one point) track sets, given
\___ ¥ ¢?
r—_——_-'
Set Cig =
Yes No T_,_. j
CEED ) @
‘ ' 3 Go t
Go to Q:) cj4 £9? Y)—r—odF | Go to J
¢ =
Set C., = ¢ |
No © 033 $
and Cj4 = ¢
\Go to @ , J




. Inputs: For 1ecjl

. . M . 5-1
o From before: X , s.(3-1) _ >

A , L.(j-l)”’]_,.(j-l)
i33-1,3° "i35-1,5° °i 1 1
a=0.

ia

At present: rjk known positive number, Bjk(rjk by m) for k such that Zijkﬂ

Rjk (I.:jk by rjk positive definite ), for k such that Zijk ¢
{Zijklle cjl; 1<k £ q such that Zijk £ ¢}

3.7 -2 Tjkofor tecy
l<kzq _
such that . .
Zisx * 9 i
s (3) s (3-1) S.. : .
1 1 ij »
A

ijk T Zijk 7 Bjk¥ijo1,50 1eCyy

= Dyy ULy * Dby 51,50 )

- RS G T -1
Ajjkex~ = -k~ Ry Rix-Bix-2ij5 Bjk~ Ryk~

i for lv%k‘,k”;q such that Zijk‘ # o, Zijk"# s
log det r‘ij = Z log det Rjk , :
l<kzq
such that
Zisx 7 ¢
( Go to E%;)"
-\ + log det (Im + Dij'Ai,j-l,j)




®

Inputs for 1ecj2

j-1
. X G-1) . (G-1)
From before: ki,j-l,j’“i;j-l,j’ S5 2: Sig’ Li
a=0
At present: No inputs
'S)

> t
(No rjk S, Bjk's, Rjk's, Z..

5, (3) =5 GD)

~ ~

... o= X, . )
XI;JJ ij3j-1,j

i33,j  Mjji-1,j

Lij =0

L.(j) = L.(j-l)
1 1

(,Go to (:))

C-10




Gijk-,k~= Sk-x~R

for 1<k’, K<q. such that Zijk‘ ¢,

je- ?

T

B...A. . . B., .
Jk71,5-1, ik

Zijsz# ¢
For Zij = (Gijk,’kﬂ) R
‘ 1< k*,k7sq
Zi5k- 7 ¢
Zijx " F ¢
compute
log det (zij) and
-1 df '
Ii; = (Aq55- x)
Appendix A 1<k, k"< q
may be use- such that .
ful here Zijk' 7 o, Zijk” # ¢
Go to 26
Fooo= 3 BL . A.. .. B....
ij jko Tijks,kv Tk
1<k ,k"«q,
such that
Zijk’ F 4,
Zisx- 70
= (I_ - A, . .«F..YA. . .
Aijj (m 1’3'1sJ lJ) 1’3'1’3

Go to QED

C-11




O

Lij = sij log 24 + log det zij
L’} = T -A .
ij 2: Vijk- Yijkk~ Vijk~
l<k-,k~<q
such that
Zijk- 7 ¢
Zijk-7 ¢
L.. = Lz. + L2

ij ij ij

ieC.
J3,~J\Go to )
ie C-l

J

() . (3-1)
A TE R B

j
@G)— ;97 - L, 0D, L
i i ij

For each 1 ele

()~
Li > Tij(e)’ ?
where Tij is determined from

2
B = Pr(x" (57> T::(8))
g €3) 7 1]
1
for 0<g<1l, B small

No } Yes
[ M is a fixed large number
Continue track set i Begin formally new track
Redefine ch to be ' set: replace 1 by M+i,
restricted to i such Put szfang
that L. 7T, (8) set 2 =
i ="1ij ‘ M+1
s.. >m?
1 B
Yes No Go to <)

Cc-12




o (::>

A
X...= . e .t AL . .Tl..lo
ijj i,5~1,7j ijj Z B]k Rjk Yijk
lzkzq
such that
Zise o
Go to 27
i35 © “ij-1,
Go to 29
@
i A
1,5,5+1 7 %541 ° Xij; ,
_ T T
A. . . = 9, R SN ..eP_~
i,j,j+1 j+l 71,35 °Jk * GlJ pj 6
Go to (28




Inputs: ieC

a

i3
From before: Li(j'l) =0
Formally set at present: ii,jgl,j = E(Y ), i,9-1,5 ° Cov(xij)
At present: k

rjk’Bjk(rjk by m) for

such that Zijk F o,

Rjk (rjk by rjk positive definite) for k

such that Zijk ¥ ¢ ,

{Zijkli € ch; 12kzq

such that Zijk F 4}

1<'k< q ’
such that

Zijx 9

Vijk T Zijk"B;

kB (X i,])

™\

)

Yes

No

For each ie¢C. . :
. j2
L. () -,
i i
N A
S..>m?
1} )
Yes No
ez) Go to GZ)_
)

C-14




®

Let

For each i« cj4 (for given new Q(j))

be formed out of at least two old track sets or

Mz, l0sasi,

1<kzq

such that

Ziak 7o},

2

former false alarms. Fix j
Let oy be the minimal value of o, for
jlg.a;j such that Zia # 6.
Set a = @y
}

In @,7®, @ replace j

everywhere by a. Go to Q4

and loop thfougﬁ only up to,

and including, <:>. i

S No
a+tl <j ? }
J Outputs:
Yes -
¢ A
: ) M1,3,34100 5,541
(35,041 # 47 (i)’ ’
Li- ﬁriacw.
Yes No J
- Return to j notation
Go to fGo to -
and loop and loop
through, up through up
to, and in- to, and Go to \
cluding, éﬁfluding,
\ J

Replace a by u+fFJ

Y

N

C-15




Y

@

[+ 2,0 1€ ;2 (5)

i.e., no previous false alarms

are destroyed and ZOj s{ZOjk l<ksal#f ¢?J
Yes
|
G- _ 5, ()
Z0 = Z0 ?
i.e., ZOj = ¢?
For all k, 1:2k=2q T
such that ZOjk # ¢ Yes No

Inputs: rjk known number 2

ejk known rjk by 1

-2 ].Og pr(zo(j) |Q(j))
= -2 10g pr(zo(j‘l)lQ(j'l))

M. known positive definite
ik T by r
jk jk

fjk = card (ZOjk) 21 known
Zoix = {Zojkele™lsZs--s £5p1 |
f.

& z 0.,y .M;1 S

Rosk = 20 ojke®51) M5k Cogru 851

w=]1

4

LOjk = fjk-(rjk-log 2 +log det'Mjk)
| )
OJk RO]k * LOJk Yes
(; $ # Z (J 1) -)
Yes No.

(6o to ®)|~

(3) . j-1)
2o = 20(3l ?

i.e., Zo(j'l) = 9,

~

but Z,. ?
u 03 ) )

No
i |
(o to GY) (Go to @)

{57

-2 log pr(z,0)q0)
-2 log pr(zo(j‘l)lq(j'l)

<k <q OJk
such that

ij

A




;

Go to @ and

¢

everywhere replace j by a

Is o such that there
are k's, l<kzq
such that ZOjk ¥ ¢?

Yes No
i
Loop through -2 log Pr(ZO(G)lQ(Q))
up to, and (a-1) {~(a-1)
including, "2 log pr(Zy TlQ
[ |
1

.Replace a by a+l

( a+tlcj? )

Yes No

3

{l

’ ) |

OQutput:
-2 log pr(z,(3)]q03)

Return to j notation

C-17




Non-Geolocation Target Attribute Data

(:D.

<:Norma1 Approximation Usé£E>

Yes No

-21og pr(Y(J)lQ(J))
= -2 10g pr(¥(3-1) |3 -1),

L (J)

; lzkzq
1 such tha

Yijk f ¢

For all i such that Y.

)

F o,
ij

)

-2 log(ﬂz k1) pr(Yijk Hi’Q(j))'pr(H‘
eC

Go to 1"

:

- 2 log pr(Y(J)IQ(J))

(i)
= L1 J

for i1
such that

{Go to (J

C-18




Kalman Filter

or Direct Regression?

Kalman Direct

‘Go to CE) >

(:Nbrmal Distribution Approximation

for Attribute Used?

Yes No

1(60 to W

Set:

o}

o

. .=C. ,=C.
31 s1 Jt 2 Jl , 4

\_"_¢ .

C-19

Go to i!b




For all i>1 such that Yi(j) $¢; HieC,

- - J -
pr(v, 9l n, 00y - n 1<l}(<qprori(,lklﬂi,Q(J))
' (sﬁ—ih___that
Yiak ¢

1,3 - 2108 T pr(y; 31,0090y pr ;)
1

-2 10g pry3 iy - ¢ 1, U)
1<i
such that

Y, () # ¢

C-20




Kalmen Filter Approach for’ Noniggplocation Target

Attribute Data Under the Normal Distributional Approximations

Go to @ and every'where replace:

m by b rjk by 3;5k
25k BY Yis5x Rig by Rysy

(j) (j)
Z, by Y Bjk by Bijk

(3) ()
Zi by Yi ¢j by Ib

etc. Gj by 0

L by L Pj by 0
Li(j) by Li(j) ( Thus 27 becomes
b1y PV b Mij,501 7 Mig

~ ~

43,541 7 Migy o)

¢5y by Ty Dy; by Dy,
etc.
Xij b)’ Hl, Aijkt ,kh by ijk, kap
Xi59-1,5 Y Hij5o1,3 ij 9 Zij
33,3 i35, ik 1P Cijxx*
etc
) 1. i by F..
Aisi-1,5 ® Ri55-1,5 ij o Fyj
etc

€C-21

Go

to




Also everywhere in @ “replace:

(i-1) -(j-1)
S by 4
- Sij Py 4y

-

vijk BY vijk-

Further evaluations:

For ;ijk’ use (4.98).

¥ .
If ij >b.

For 1p.., use eqs. (4.93) - (4.95).

1j
For Aijk’k" » use (4.91), (4.101), (4.102).

For 1log det (Rijk) s use (4.103).

For g5y Rijk Sij » Use (4.96), (4.97).

——— ——— e — c—— o—— w—— ——— ity s sty ettt

p.} .
For i <b:

-~ T
For g Ai,j-l,j Bijk" » use analogue of eq. (4.102).

ijk-
T .
For Bijk‘ Aijk‘k"Bijk" » use eqs. (4.109) - (4.111).

T -~
For Bijk" Aijk‘k” Vijke , use eqs. (4.98), (4.109),

(4.112), (4.113).

When @ is reached, skip to @ and continue looping through
as usual.

When @ is reached and outputs deposited, resume old notation

again in @, until next cycle into @

C-22
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Direct Regression Approach to Non-geolocation Target Attribute

Data , Under Normal Distributional Approximations

i

=

L)

1

> b?

Yes

log det (J) = 2 log det(R )

1 a=3

log det log det R ok

1< ;q
such that
1o.k ¢

k

Q
log det Riak = :Ef log Ty,

- J
4 G) . i =(1/ ‘) (1)
i,y Z lay Ty 1;zk:;q, jpzesds
such that Y, , # ¢,

and there is n, 1 <n<hb

such that Y=biakn
e T.

iak

log det (I + ?(j)'Cov(Hi))
i .

b .
2: log(1l + d;2)°var(ﬂiy))

v=1

log det Cov(Yi(j)lQ(j))

= log det R(j) + log det (Ib + D(j)'Cov(Hi))
i

Go to @!B

c-23
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Li(j)‘ = bi(j) log 2% + log det Cov(Yi(j)|Q(j))

(J) (1/ )31 ;‘_2] Z (Yigx = EC(Hy 4 )

lzkz<q iakn
such that Yiuk # ¢

and such that there
is n, 1<n<b, so that

Lon blakn . Tiuk

Approximation desired minimizing
knowledge of E(Hi), Cov(Hi) ?

Yes No

In computation
Gy~
for Li below,
set E(Hi,b ) =0

iakn
and var(H:LY =4+ @
Gy a' z
J . -

L ) Tigr "EM;p )
1<k,§= 1akn 1%kn
such that

igk # ¢

Ok
/((1/var(H1Y)) + d (J))) ¥,y

LG) o L GY )
1 1 1

for all i such that Yi(j) # ¢,

( Go to @ID >
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SUMMARY OF FLOW CHART INPUTS OUTPUTS

Summary of Time-Independent Quantitites

C is a known sét of possible non-geolocation target attributes.
Card (C) = a. Each element of C 1is a E by 1 vector of values
such as (true) hull leﬁgth, flag color, identification, etc.

Fixed number of sensor systems operating is q, though some
at times may fail to collect data.

m is the common dimension of each target state parameter vec-
tor; n 1is the dimension of the driving noise vector (eq. (2.1)).

If normal approximations are used for the non-geolocation tar-
get attributes:

E(Hi), Cov(Hi) are the mean and covariance matrix of variability
or randomness for any target i, and it is assumed their values are
not dependent on i (nor on j).

If normal approximations are not used for the non-geolocation
target attributes:

pr(Hi) the prior probability function of Hie C is known;
it is usually assumed to be uniform: pr(Hi) =1/a for all Hie c,

where a = card(C). (pr(Hi) does not depend on j.)

Summary of Previous Outputs for Data

Partitioning Q(j'l) = {Q (j'l), Q (j'l), ...}, where
. 0 1
Qi(J'l) is the perceived (target, if i>1, false alarm, if
i=0) ith track set consisting of data Zi(j'l) = {ziakl 0O<aci,

C-25




Kalman filter outputs: iij-l .y s
] *
(m by 1) (m by m pos{tive definite)

A. .
- i,j-1,j

.4
3-1, Mij-1,5 .
by 1) (b by b positive definite)

(The last two are not re-

quired if the Kalman filter - normal approximation procedure is not

used for the non-geolocation target attributes.)
(

L, G- .

Li(j'l) = -2 log pr(Yi(j'l)lQ(j'l)), for i>1;

-2 Tog pr(z, ("D @G-y - PN (1,0-1) ;
i=1,2,..

-2 tog pry U710y = 30 (1, 0°1)
i=1,2,..

32UV 7G-Dy o 3 104 prz, G-1) (li-D)y
2 10g pr(z, U D |Ql-1);

-2 10g pr(Y(j-l) |Q(J‘1))

Summary of Data Inputs at

Sampling Time t. but Before New

Partitioning Q(J)ig carried out

Consider sensor system k, k =1,.., q:

If no new data at all arrives, zj = ¢

If some new data arrives Zj ¢ ¢, and for each sensor

.. . . "
-2 1og pr(z; 3" 11U 1)), for 1505 L, 0 | for iz,

k

which obtains data, mjk > 1 is the number of data reports received;

C-26




Zj - (ZY:j;k) -
Y=1,..,mjk
k=1,..,q
(where above, set Zij = ¢ for those k's for which mjk = 0).
The Yth report received by sensor k at tj is , I;J;mjk

z2.
B .y = -;11‘) ,
vik (ijk

27jk is rjx by 1 geolocation data vector
(rjk z 1)
Z“;k is aij by 1 non-geolocation data target attribute

vector
(0 = a5k b)),

It is possible for a given v, I;J;mjk , for mjk; 1, to be

such that Z;jk = ¢ or Z;3k = ¢, but not both (otherwise

mjk = 0).

235k = . iff a5 = 0.

Z;jk contains as components, typically measured positions,

velocities, etc., from sensor system k at tj for report v

Z;gk Contains as components, A given subset T (of

Yjk

size ank) of a fixed set of b attribute values.

Cc-27




Typically, this could be .-

(number of radars on—board)
P J

”

hull length
flag color

where the total attribute set is {number of radars on-board,
identification, shape, hull length, flag color}
(b = S here),

Also given for eagch-sensor k is Bjk , Tk by m measurement

matrix,
Typically, if the ith target state parameter vector is
(m = 4)

X-pos, at t

y-pos, at t

4
"

13 x-vel. at t

y-vel. at t

and only x- and y- positive measurements can be made at
by sensor k, ._.then

(observed X-pos. at tj)
2., =
ik observed y-pos. at t.

)
and
e (10 ewe
(rjk = 2) . (see eq. (2.2))

Also given is the measurement error covariance matrix.

Rjk (rjk by rjk positive definite) is typically obtained

C-28




~

approximately as Rjk = qjk.ij'ﬁjkT , Where djk is a matrix
of Jacobians of the transformation from sensor coordinate to
cartesian coordinate space, and ij is the covariance matrix of
measurement error of sensor system Kk at tj for its natural
(sensor)-coordinate system. (See also eq. (2.2).)

Also, for each sensor system k, is given ejk (rjk by 1),
the mean of the false alarm dispersion ; Mjx the corresponding
(rjk by rjk) positive definite covariance matrix.

Also, the common target motion transition matrix 'j
(m by m) driving noise coefficient matrix Gj (m by n) and
driving noise covariance matrix Pj (n by n positive definite)
are all'known. (See eq. (2.1).)

If required (usually by a fixed procedure ),E(Xij) (m by 1)
and Cov(xij) {m by m positive definite) will be known, but not

dependent on 1i.

Similarly, for non-geolocation attribute data, given are:

Byjk1
Byjk 5 . ’
YJkank
Bijn = (0!"’ 0’ 1’ 0’ * 0) ’
. th L
where the 1 occurs in the bijn position, 1 < n 2 ayjk’
where 1< byjkl < byij“” <b7jkayjk b and
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aq } .
YJkankA

T

b b

vik = ys5x10 Pyjkzr - oo

The corresponding measurement error covariance matrix is

(aij by ank positive definite)
Rij is a submatrix of fixed by by b positive definite covariance matrix
R

which is predetermined.
If normal approximations are not used for the non-geolocation
target attributes:

The discrete probability function pr(Yijlﬂi) is assumed known

for all outcomes ijk (a by 1) and Hi (b by 1), given selection

vik
]
set Tyjk' The Hi's are ¢ C and the Y jk s are subvectors

of vectors ¢ C.
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Quantities Known at t;

Only After Partitioning Q(J) is Carried Out

Q(J) = {Qo(j), Ql(j), ... } known, where Qi(j) = Zi(J).
fjk " the number of false alarms for sensor system k at tj

is known and index i ‘representing target i is now known; all

relative to Q(j).

Following rearrangements,

Zj = (zijk)‘
i=0,1,2,...
k=i,..,q
for Zi5k )
Z; . A
7... =[-11K z _yik
gk y, 2:: ’
ijk vyjk

Z is rjk by 1 geolocation data vector assigned to

ijk
track set i .

Yijk is aijk by 1 geolocation data target attribute vector
assigned to track i .

Zijk and/or Yijk may be vacuous; Yojk = ¢ always.

Thus, Tijk’ Bijk’ Rijk become determined; similarly for

pr(YijkIHi). .
The total data Z(J) up to tj can be broken up two different

ways:
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) o (2, 7 ), y03), o

[ 4

= 2,005 -0,1,2, ..

where

( - - ) - .
z,0) =21, 2, .01,

zi(J) =2y, l0 5023 1aksa, 2y, ¢4

= geolocation data for track set i up to t. ,

ZO(J) = {z1akm|0 <as Js lgkzgq, 1guwcg fak ’
Zigk T )
= false alarm data up to tj R
YOl =y, Oi -1, 2, 10 ,

Yi(J) =Ykl 02esxds lskea, Y. F09}

= non-geolocation attribute data for track set i

up to t. .
P j

In turn, these determine sets cjl, ch’ st Cj4, le, Cjz

st Cj4 (the last four are not required, if the Kalman filter-
normal approximation procedure is not used for the non-geolocation
target attributes). (See Flow boxes 7 - 10 for definitions.)

Note also the notation:

; similarly for Y,.

25 = (i1 i

1<k<q
such that
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